Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 727-733    DOI: 10.11900/0412.1961.2015.00493
  论文 本期目录 | 过刊浏览 |
Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*
楼白杨(),王宇星
浙江工业大学材料科学与工程学院, 杭州 310014
EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS
Baiyang LOU(),Yuxing WANG
Faculty of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
引用本文:

楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
Baiyang LOU, Yuxing WANG. EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS[J]. Acta Metall Sin, 2016, 52(6): 727-733.

全文: PDF(857 KB)   HTML
  
摘要: 

采用非平衡磁控溅射离子镀技术在M2工具钢和单晶Si表面沉积多元CrMoAlN纳米多层薄膜. 利用EDS, SEM, XRD, XPS, 纳米压痕仪和销盘磨损试验仪研究Mo含量对CrMoAlN薄膜成分、表面和截面形貌、相结构、化学价态、显微硬度和摩擦性能的影响. 结果表明, 不同Mo含量的CrMoAlN薄膜均为fcc结构, Mo代替了CrAlN晶格中部分Cr或Al的位置, 形成了以fcc-CrN相为基础的CrMoAlN置换固溶体. 随着Mo含量提高, CrMoAlN薄膜表面颗粒尺寸明显减小, 截面柱状晶结构逐渐消失. CrMoAlN薄膜的显微硬度和弹性模量随着Mo含量的增加而提高, 摩擦系数和磨损率随着Mo含量的提高而降低. Mo含量为19.47% (原子分数)时, 显微硬度与弹性模量均达到最大值29.70 GPa和427.53 GPa, 摩擦系数和磨损率达到最小值0.271和1.2×10-16 m3/(Nm).

关键词 CrMoAlN纳米多层薄膜磁控溅射微观结构摩擦磨损性能    
Abstract

In recent decades, CrAlN coatings have been widely used for cutting tools due to their high hardness, good wear resistance, especially excellent thermal stability and oxidation resistance. However, the rapid development in high speeds and dry cutting applications demands further improvement in hardness and wear properties of CrAlN coatings. Mo nitrides coatings are commonly used as protective surface layers against wear and corrosion. The combination of CrAlN and Mo may lead to the development of new composite coatings with superior wear properties. In this study, the CrMoAlN multilayer coatings with different Mo contents were deposited on M2 tool steel and silicon wafers substrates by closed-field unbalanced magnetron sputtering ion plating (CFUMSIP) technique in a gas mixture of Ar+N2. The chemical composition, surface and cross sectional morphologies, microstructure, mechanical and tribological properties of coatings were studied by EDS, SEM, XRD, XPS, nano-indentation and pin-on-disk tribometer, respectively. The results indicate that the CrMoAlN coatings exhibit fcc structure. Mo atoms substitute Cr and/or Al atoms in CrAlN lattice forming the solid solution CrMoAlN coatings. The surface and cross-sectional morphologies of the CrMoAlN coatings show that the grain size and the column width decrease with the increasing of Mo content. Nano-indentation result reveals a promoted hardness and elastic modulus of the CrMoAlN coatings with enhanced Mo content from 0 to 19.47% (atomic fraction) due to the solid solution strengthening and grain size diminishment. A maximum hardness and elastic modulus of the coatings are found to be 29.70 GPa and 427.53 GPa when the Mo content reached to 19.47%. The average friction coefficient and wear rate were observed to decrease with the increase of Mo content and the lowest values were 0.271 and 1.2×10-16 m3/(Nm), respectively, at 19.47%Mo.

Key wordsCrMoAlN nano-multilayer coating    magnetron sputtering    microstructure    tribological property
收稿日期: 2015-09-21     
基金资助:* 浙江省自然科学基金资助项目Y15E050060
图1  不同Mo含量CrMoAlN薄膜的XRD谱
图2  不同Mo含量的CrMoAlN薄膜的表面形貌
Coating Mo target current
A
Atomic fraction / % Thickness
μm
Deposition rate
nms-1
Cr Mo Al N
CrAlN 0 44.97 0 5.16 49.87 2.121 0.29
CrAlN-2Mo 2 39.93 7.94 5.59 46.54 2.467 0.34
CrAlN-4Mo 4 35.12 16.05 4.28 44.55 2.629 0.37
CrAlN-6Mo 6 32.63 19.47 3.25 44.65 2.742 0.38
表1  不同Mo含量CrMoAlN薄膜各元素原子分数、厚度和沉积速率
图3  不同Mo含量的CrMoAlN薄膜的截面形貌
图4  CrMoAlN薄膜的XPS分析结果
图5  不同Mo含量的CrMoAlN薄膜硬度和弹性模量随压入深度变化曲线
图6  不同Mo含量的CrMoAlN薄膜室温摩擦曲线
Coating H / GPa E / GPa H3/E2 Friction
coefficient
Wear rate
10-16 m3N-1m-1
CrAlN 21.71 318.72 0.101 0.307 2.0
CrAlN-2Mo 23.14 340.13 0.107 0.298 1.5
CrAlN-4Mo 25.72 380.65 0.120 0.291 1.3
CrAlN-6Mo 29.70 427.53 0.143 0.271 1.2
表2  不同Mo含量CrMoAlN薄膜的纳米硬度H, 弹性模量E, H3/E2, 摩擦系数和磨损率
图7  不同Mo含量的CrMoAlN薄膜磨痕表面形貌
[1] Conde A, Navas C, Cristobal A B, Housden J, Damborenea J.Surf Coat Technol, 2006; 201: 2690
[2] Barshilia H C, Selvakumar N, Deepthi B, Rajam K S.Surf Coat Technol, 2006; 201: 2193
[3] Cheng Y H, Browne T, Heckerman B.Wear, 2011; 271: 775
[4] Lin J L, Zhang N Y, Sproul W D, Moore J J.Surf Coat Technol, 2012; 206: 3283
[5] Lorenzo-Martin C, Ajayi O, Erdemir A, Fenske G R, Wei R.Wear, 2013; 302: 963
[6] Mo J L, Zhu M H, Leyland A, Matthews A.Surf Coat Technol, 2013; 215: 170
[7] Romero J, Gómez M A, Esteve J.Thin Solid Films, 2006; 515: 113
[8] Wo P C, Munroe P, Jiang Z T, Zhou Z F, Li K Y, Xie Z H.Mater Sci Eng, 2014; A596: 264
[9] Lin J L, Wang B, Ou Y X.Surf Coat Technol, 2013; 216: 251
[10] Rapoport L, Moshkovich A, Perfilyev V.Surf Coat Technol, 2014; 238: 207
[11] Banakh O, Schmid P E, Sanjines R, Levy F.Surf Coat Technol, 2003; 163: 57
[12] Wang L P, Zhang G A, Wood R J K, Wang S C, Xue Q J.Surf Coat Technol, 2010; 204: 3517
[13] Li T P, Zhou Y C, Li M S.Surf Coat Technol, 2008; 202: 1985
[14] Tam P L, Zhou Z F, Shum P W.Thin Solid Films, 2008; 516: 5725
[15] Yang Q, Zhao L R, Cai F, Yang S, Teer D G.Surf Coat Technol, 2008; 202: 3886
[16] Yang S C, Li X Y, Cooke K E.Appl Surf Sci, 2012; 258: 2062
[17] Qi D L, Lei H, Fan D.Acta Metall Sin, 2015; 51: 371
[17] (齐东丽, 雷浩, 范迪. 金属学报, 2015; 51: 371)
[18] Yang Q, Zhao L R, Patnaik P C, Zeng X T.Wear, 2006; 261: 119
[19] Yang K, Xian G, Zhao H B, Fan H Y, Wang J, Wang H, Du H.Int J Refract Met Hard Mater, 2015; 52: 261
[20] Qi D L, Lei H, Wang T G, Pei Z L, Gong J, Sun C.J Mater Sci Technol, 2015; 31: 55
[21] Chang S Y, Kim K H, Kwon S H, Park I W.J Korean Phys Soc, 2009; 54: 1237
[22] Qi Z B, Wu Z T, Wang Z C.Surf Coat Technol, 2014; 259: 146
[23] Cheng W L, Zhou Z F, Shum P W.Surf Coat Technol, 2013; 229: 84
[24] Kim K H, Choi E Y, Hong S G, Park B G, Yoon J H, Yong J H.Surf Coat Technol, 2006; 201: 4068
[25] Musil J, Kunc F, Zeman H, Polakova H.Surf Coat Technol, 2002; 154: 304
[26] Xu J H, Ju H B, Yu L H.Acta Metall Sin, 2012; 48: 1132
[26] (许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[5] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[6] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[10] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[11] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[12] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[13] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[14] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[15] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.