Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 561-566    DOI: 10.11900/0412.1961.2015.00517
  论文 本期目录 | 过刊浏览 |
Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*
李维丹,谭晓华,任科智,刘洁,徐晖
上海大学材料科学与工程学院材料研究所, 上海 200072
MAGNETIC VISCOSITY BEHAVIOR AND EXCHANGE INTERACTION FOR Nd2Fe14B/α-Fe NANOCOMPOSITE PERMANENT ALLOYS
Weidan LI,Xiaohua TAN,Kezhi REN,Jie LIU,Hui XU
Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
Weidan LI, Xiaohua TAN, Kezhi REN, Jie LIU, Hui XU. MAGNETIC VISCOSITY BEHAVIOR AND EXCHANGE INTERACTION FOR Nd2Fe14B/α-Fe NANOCOMPOSITE PERMANENT ALLOYS[J]. Acta Metall Sin, 2016, 52(5): 561-566.

全文: PDF(747 KB)   HTML
摘要: 

利用扫描速率法研究纳米晶复合永磁合金Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1和Nd9.5Fe75.4Co5Zr3B6.5Ga0.6的磁黏滞行为, 计算了合金的扰动场及磁交换长度, 分析了其交互作用、微观结构和磁性能之间的关系. 结果表明, 3种合金的扰动场分别为4.80, 4.87和5.09 kA/m; 磁交换长度差别不大, 分别为4.53, 4.41和4.20 nm. Nd9.5Fe75Co5Zr3B6.5Nb1合金的交互作用最强, 主要是因为合金中的晶粒尺寸细小(约为15 nm)且分布均匀. 3种合金均呈单一的硬磁特征, 其中Nd9.5Fe75.4Co5Zr3B6.5Ga0.6合金磁化反转的一致性最好, 使得其剩磁较高, 最大磁能积较大.

关键词 纳米晶复合永磁合金磁黏滞交互作用微观结构    
Abstract

A well known feature of ferromagnetic materials is the time dependent behavior of the magnetic polarization, i.e. magnetic viscosity, which arises from thermal activation over energy barriers. It is found that magnetic parameters, such as the fluctuation field (Hf) and the exchange interaction length (lex), have a close relationship with the microstructure of the materials. Therefore, investigation on magnetic viscosity is helpful to understand the coercivity mechanism of ferromagnetic materials. In this work, ingots with nominal composition Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1 and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 were prepared by arc-melting pure metals Nd, Fe, Co, Zr, Dy, Nb, Ga and Fe-B alloy in an argon atmosphere. A small portion of an ingot weighing about 5 g was re-melted in a quartz nozzle and ejected onto a rotating copper wheel in a range of 10~30 m/s. The annealing treatment was carried out at 690~710 ℃ for 4~5 min. Vibrating sample magnetometer (VSM), XRD and TEM were used to study magnetic viscosity behavior and exchange interaction for Nd2Fe14B/α-Fe nanocomposite permanent alloys. Furthermore, the relationship among exchange interaction, microstructure and magnetic property was discussed. For the nanocomposite Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1 and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloys, Hf and lex were obtaind by sweep rate measurement. The Hf were 4.80, 4.87 and 5.09 kA/m, and lex were 4.53, 4.41 and 4.20 nm for permanent Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1 and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloys, respectively. It suggested that the lex had a minor change. The Nd9.5Fe75Co5Zr3B6.5Nb1 alloy had the strongest exchange interaction among three alloys in this work. It is due to a refined microstructure and uniform distribution of grains. Furthermore, the behavior of the irreversible susceptibility (χirr) as a function of applied magnetic field (H) was investigated. A single sharp peak could be seen near coercive field in the χirr-H curve in three alloys, suggesting that the magnetization reversal was a uniform reversal process. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibited a sharper and narrower peak, indicating a more rapid change in magnetization and a strong interaction between adjacent magnetic phases. Since exchange interaction of neighboring grains favors the nucleation of reversed domains, remanence enhancement is generally achieved at the expense of coercivity. Among three alloys, Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy showed the optimum magnetic properties, that is, the coercivity Hc=687.56 kA/m, the remanence Br=0.92 T, the maximum magnetic energy product (BH)max=120.88 kJ/m3. It was mainly due to consisting of well-coupled grains with near perfect alignment of the easy magnetization direction, which improved the remanence and maximum energy product.

Key wordsnanocomposite permanent alloy    magnetic viscosity    exchange interaction    microstructure
收稿日期: 2015-10-08     
基金资助:* 国家自然科学基金项目51171101和51471101资助
Alloy Abbreviation Wheel speed / (ms-1) Annealing temperature / ℃ Time / min
Nd8.5Fe76Co5Zr3B6.5Dy1 Dy1 15 690 5
Nd9.5Fe75Co5Zr3B6.5Nb1 Nb1 22 710 4
Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 Ga0.6 18 710 5
表1  实验用纳米晶复合永磁合金的编号缩写、快淬速率及最佳热处理条件
图1  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的XRD谱
图2  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的退磁曲线
Alloy Hc / (kAm-1) Br / T (BH)max / (kJm-3) Hf / (kAm-1) lex / nm Average grain size / nm
Dy1 872.45 0.73 88.18 4.80 4.53 18
Nb1 759.86 0.82 110.92 4.87 4.41 15
Ga0.6 687.56 0.92 120.88 5.09 4.20 40
表2  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的磁性能参数、扰动场Hf、磁交换长度lex和平均晶粒尺寸
图3  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的直流退磁的剩余磁化强度和等温剩余磁化强度之间的差值(δM)随外加磁场(H)的变化曲线
图4  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的矫顽力(Hc)同扫描速率(r)对数的关系曲线
图5  3种纳米晶复合永磁合金的TEM明场像
图6  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的不可逆磁化率(χirr)随外加磁场(H)的变化曲线
[1] Coehoorn R, De Mooij D B, Duchateau J P W B, Buschow K H J.J Phys, 1988; 49: 669
[2] Skomski R, Coey J M D.Phys Rev, 1993; 48B: 15812
[3] Schrefl T, Fidler J, Kronmuller H.Phys Rev, 1994; 49B: 6100
[4] Street R, Brown S D.J Appl Phys, 1994; 76: 6386
[5] Crew D C, McCormick P G, Street R.J Phys, 1996; 29D: 2313
[6] Tomka G J, Bissell P R, O'Grady K, Chantrell R W. IEEE Trans Magn, 1990; 26: 2655
[7] Givord D, Lienard A, Tenaud P, Viadieu T.J Magn Magn Mater, 1987; 67: 2 81
[8] Singleton E W, Hadjipanayis G C.J Appl Phys, 1990; 67: 4759
[9] Ferguson G B, O'Grady K, Popplewell J, Chantrella R W.J Appl Phys, 1991; 69: 5495
[10] Cornejo D R, Villas-Boas V, Missell F P.J Appl Phys, 1998; 83: 6637
[11] Lobue M, Basso V, Beatrice G, Bertotti C, Durin G, Sasso C P. J Magn Magn Mater, 2005; 290~291: 1184
[12] Collocott S J, Dunlop J B.J Magn Magn Mater, 2008; 320: 2089
[13] Zhang H W, Zhang W Y, Yan E R, Shen B G.Acta Phys Sin, 1999; 48: 211
[13] (张宏伟, 张文勇, 阎阿儒, 沈保根. 物理学报, 1999; 48: 211)
[14] Chen B C, Liu X M, Chen R J.J Alloys Compd, 2012; 516: 73
[15] Chen Y Z, He S L, Zhang H W, Chen R J, Rong C B, Sun J R.Acta Phys Sin, 2005; 54: 5890
[15] (陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣. 物理学报, 2005; 54: 5890)
[16] Garcia-Otero J, Porto M, Rivas J.J Appl Phys, 2000; 87: 7376
[17] Bruno P, Bayreuther G, Beauvillain P, Chappert C, Lugert G, Renard D, Renard J P, Seiden J.J Appl Phys, 1990; 68: 5759
[18] Collocott S J.J Magn Magn Mater, 2011; 323: 2023
[19] Jahn L, Schumann R, Rodewald W.J Magn Magn Mater, 1996; 153: 302
[20] El-hilo M, O'Grady K, Chantrell R W.J Magn Magn Mater, 2002; 248: 360
[21] Skomski R, Coey J M D. Permanent Magnetism. Bristol: Institute of Physics Publishing, 1999: 159
[22] Fischer R, Schreel T, Kronmuller H, Fidler J.J Magn Magn Mater, 1996; 153: 35
[23] Breaux G A, Benirschke R C, Sugai T, Kinnear B S, Jarrold M F.Phys Rev Lett, 2003; 91: 215508
[24] Ping D H, Hono K, Hirosawa S.J Appl Phys, 1998; 83: 7699
[25] Cui B Z, Sun X K, Liu W, Zhang Z D, Geng D Y, Zhao X G.J Phys, 2000; 33D: 338
[26] Zhang S Y, Xu H, Tan X H, Ni J S, Hou X L, Dong Y D.J Alloys Compd, 2008; 459: 41
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[14] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[15] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.