Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 538-548    DOI: 10.11900/0412.1961.2015.00456
  论文 本期目录 | 过刊浏览 |
Re和W对铸态镍基单晶高温合金再结晶的影响*
濮晟1,2,谢光2,3(),王莉2,3,潘智毅3,4,楼琅洪2
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 中国科学院金属研究所, 沈阳 110016
3 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
4 清华大学深圳研究生院, 深圳 518055
EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Sheng PU1,2,Guang XIE2,3(),Li WANG2,3,Zhiyi PAN3,4,Langhong LOU2
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
引用本文:

濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
Sheng PU, Guang XIE, Li WANG, Zhiyi PAN, Langhong LOU. EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. Acta Metall Sin, 2016, 52(5): 538-548.

全文: PDF(1916 KB)   HTML
摘要: 

对不同Re和W含量的铸态镍基单晶高温合金通过Brinell硬度计压痕变形, 分别在1230~1330 ℃保温1 h, 研究了难熔元素Re和W对合金再结晶行为的影响. 结果表明, 再结晶晶粒在压痕表面形成, 并沿枝晶干向内扩展, 晶界迁移受到枝晶间粗大γ'相和γ +γ'共晶阻碍. 添加Re和W提高了铸态单晶高温合金的γ'相溶解温度和γ +γ'共晶含量, 导致单晶高温合金的再结晶温度升高. 热处理温度升高, 各单晶高温合金的再结晶面积随着枝晶间γ'相和共晶含量的减少而增大. 相同热处理温度下, 由于不同成分单晶高温合金枝晶间粗大γ'相和γ +γ'共晶含量不同, 不含难熔元素Re和W的单晶高温合金再结晶面积最大, 含Re单晶高温合金的再结晶面积大于含W单晶高温合金, 同时添加Re和W的单晶高温合金再结晶面积最小.

关键词 镍基单晶高温合金再结晶共晶ReW    
Abstract

Ni-based single crystal (SX) superalloys have been used as blades in aero-space industry and land-based applications due to their excellent high-temperature properties. However, residual strain is introduced into as-cast SX superalloy blades during the manufacturing process, such as casting, grinding or shot peening, and so on. Recrystallization (RX) occurs easily during subsequent high temperature heat treatment. In previous work, it is believed that RX has detrimental effect on the mechanical properties of SX superalloy. Furthermore, in order to improve the mechanical properties, more and more refractory elements, such as W, Re, Mo, Ta, are added into SX superalloys. However, so far, few reports about the effect of refractory elements on the RX in as-cast SX superalloys have been available. In the present work, the effect of Re and W on the RX behavior of as-cast Ni-based SX superalloy was studied. Single crystal superalloys with different Re and W contents were annealed at 1230~1330 ℃ after indened using Brinell hardnesstester. It is found that RX grains form at the surface under indentation and grow preferentially along the dendritic cores. Subsequent growth of RX is impeded by the residual coarse γ' and γ +γ' eutectics in the interdendritic regions. Both the volume fraction of γ +γ' eutectics and γ' solvus temperature are increased with the addition of Re and W, which are attributed to the increase of RX threshold temperature. For all SX superalloys studied in this work, RX area increases with the increase of annealing temperature due to the dissolution of γ' and γ+γ' eutectics. At the same annealing temperature, in comparison to Re, W shows more effect to inhibit RX growth. Additionally, SX superalloy containing both Re and W has the smallest RX area in the present experiments.

Key wordsNi-based single crystal superalloy    recrystallization    eutectic    Re    W
收稿日期: 2015-08-26     
基金资助:* 国家自然科学基金项目50901079, 国家重点基础研究发展计划项目2010CB631201及国家高技术研究发展计划项目2012AA03A513资助
Alloy Cr+Co+Mo Ta+Al W Re Ni
DD00 13 13 - - Bal.
DD04R 13 13 - 4 Bal.
DD06W 13 13 6 - Bal.
DD0WR 13 13 6 4 Bal.
表1  镍基单晶高温合金的名义化学成分
图1  DD06W合金经1250 ℃, 1 h热处理后枝晶间组织的SEM像
图2  铸态DD0WR合金枝晶组织的OM像
图3  4种镍基单晶高温合金的γ+γ'共晶组织的SEM像
Alloy γ' solves Incipient melting
temperature / ℃ temperature / ℃
DD00 1232 -
DD04R 1256 -
DD06W 1263 1362
DD0WR 1278 1358
表2  4种镍基单晶合金的γ'相溶解温度和初熔温度
图4  4种镍基单晶高温合金压痕后的再结晶温度
图5  4种镍基单晶高温合金压痕后在不同温度热处理1 h的初始再结晶形貌
图6  镍基单晶高温合金在不同热处理温度下的再结晶面积
图7  DD00合金压痕后经1280和1300 ℃热处理1 h再结晶组织的OM和SEM像
图8  DD04R合金压痕后在1290, 1300和1310 ℃热处理1 h再结晶组织的OM和SEM像
图9  DD06W和DD0WR合金压痕后经1310, 1320和1330 ℃热处理1 h再结晶组织的OM像
图10  DD0WR合金压痕后在1330 ℃热处理1 h γ+γ'共晶阻碍再结晶晶界迁移的OM和SEM像
图11  镍基单晶高温合金再结晶面积随枝晶间γ'相和γ +γ'共晶含量的变化
图12  镍基单晶高温合金在不同热处理温度的枝晶间γ'相体积分数
[1] Reed R C.The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 121
[2] Panwisawas C, Mathur H, Gebelin J, Putman D, Rae C M F, Reed R C.Acta Mater, 2013; 61: 51
[3] Xie G, Wang L, Zhang J, Lou L H.Metall Mater Trans, 2008; 39A: 206
[4] Khan T, Caron P, Nakagawa Y G.J Met, 1986; 38(7): 16
[5] Jo C Y, Cho H Y, Kim H M.Mater Sci Technol, 2003; 19: 1665
[6] Wang L, Xie G, Lou L H.Mater Lett, 2013; 109: 154
[7] Yoda R, Wantanabe T, Sato Y.Jpn Inst Met, 1969; 33: 862
[8] Fuchs G E.Mater Sci Eng, 2001; A300: 52
[9] Walston S, Cetel A, Mackay R, O'Hara K, Duhl D, Dreshfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion, PA: TMS, 2004: 15
[10] Liu L R, Sun X T, Jin T.Mech Eng Mater, 2007; 31(5): 9
[10] (刘丽荣, 孙新涛, 金涛. 机械工程材料, 2007; 31(5): 9)
[11] Pu S, Xie G, Zheng W, Wang D, Lu Y Z, Lou L H, Feng Q.Acta Metall Sin, 2015; 51: 239
[11] (濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. 金属学报, 2015; 51: 239)
[12] Panwisawas C, Mathur H, Gebelin J, Putman D, Rae C M F, Reed R C.Acta Mater, 2013; 61: 51
[13] Wang L, Pyczak F, Zhang J, Lou L H, Singer R F.Mater Sci Eng, 2012; A532: 487
[14] Xie G, Wang L, Zhang J, Lou L H.Scr Mater, 2012; 66: 378
[15] Bürgel R, Portella P D, Preuhs J.In: Pollock T M, Kissinger R D,Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 229
[16] Xie G, Zhang J, Lou L H.Scr Mater, 2008; 59: 858
[17] Bond S D, Martin J W.J Mater Sci, 1984; 19: 3867
[18] Wang L, Xie G, Zhang J, Lou L H.Scr Mater, 2006; 55: 457
[19] Zhang J, Shen J, Lu Y Z, Lou L H.Acta Metall Sin, 2010; 46: 1322
[19] (张健, 申健, 卢玉章, 楼琅洪. 金属学报, 2010; 46: 1322)
[20] Elliott A J, Pollock T M.Metall Mater Trans, 2007; 38A: 871
[21] Gungor M.Metall Mater Trans, 2006; 37A: 1949
[22] Kurz W, Fisher D J.Fundamentals of Solidification. Zurich: Trans Tech Publications Ltd., 1998: 94
[23] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z.Acta Metall Sin, 2012; 48: 845
[23] (刘刚, 刘林, 张胜霞, 杨初斌, 张军, 傅恒志. 金属学报, 2012; 48: 845)
[24] Kearsey R M, Beddoes J C, Jones P, Au P.Intermetallics, 2004; 12: 903
[25] Xiong J C, Li J R, Sun F L, Liu S Z, Han M.Acta Metall Sin, 2014; 50: 737
[25] (熊继春, 李嘉荣, 孙凤礼, 刘世忠, 韩梅. 金属学报, 2014; 50: 737)
[26] Cox D C, Roebuck B, Rae C M F, Reed R C.Mater Sci Technol, 2003; 19: 440
[27] Paul U, Sahm P R, Goldschmidt D.Mater Sci Eng, 1993; A173: 49
[28] Porter A, Ralph B. J Mater Sci, 1984; 19: 3867
[29] Dahlen M, Winberg L.Acta Metall, 1980; 28: 41
[30] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., London: Elsevier, 2004: 112
[31] Zambaldi C, Roters F, Raabe D, Glatzel U. Mater Sci Eng, 2007; A454-455: 433
[32] Wang L, Jiang W G, Lou L H.J Alloys Compd, 2015; 629: 247
[33] Caron P.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 737
[34] Giamei A F, Anton D L.Metall Trans, 1985; 16A: 1997
[35] Yang D Y, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.J Aeron Mater, 2003; 23(suppl): 17
[35] (阳大云, 金涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 航空材料学报, 2003; 23(增刊): 17)
[36] Porter A J, Ralph B.Mater Sci Eng, 1983; 59: 69
[37] Goldschmidt D, Paul U, Sahm P R.In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992: 155
[38] Simth C S.Trans Met Soc AIME, 1948; 175: 15
[39] Glatzel U.Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Base Superalloy. Berlin: Verlag DrKoster Press, 1994: 14
[40] Sudbrack C K, Isheim D, Noebe R D, Jacobson N S, Seidman D N.Microsc Mircroanal, 2004; 10: 355
[41] Ge B H, Luo Y S, Li J R, Zhu J.Metall Mater Trans, 2011; 42A: 548
[42] Karunaratne M S A, Carter P, Reed R C.Mater Sci Eng, 2000; A281: 229
[43] He X L, Djahazi M, Jonas J J, Jackman J.Acta Metall, 1991; 39: 2295
[44] Pan Z Y, Hu X B, Xie G, Zhu Y L, Pu S, Ma X L.J Chin Electr Microsc Soc, 2014; 33: 197
[44] (潘志毅, 胡肖兵, 谢光, 朱银莲, 濮晟, 马秀良. 电子显微学报, 2014; 33: 197)
[45] Pessah M, Caron P, Khan T.In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992: 567
[46] Darolia R, Lahrman D F, Field R D.In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: TMS, 1988: 255
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[8] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[9] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[10] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[11] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[12] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[14] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[15] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.