Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 307-312    DOI: 10.11900/0412.1961.2015.00233
  论文 本期目录 | 过刊浏览 |
异步轧制硅钢表面纳米结构稳定性与渗硅行为*
刘刚1(),李超1,马野1,张瑞君1,刘勇凯1,沙玉辉2
1 东北大学研究院, 沈阳 110819
2 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING
Gang LIU1(),Chao LI1,Ye MA1,Ruijun ZHANG1,Yongkai LIU1,Yuhui SHA2
1 Research Academy, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
Gang LIU, Chao LI, Ye MA, Ruijun ZHANG, Yongkai LIU, Yuhui SHA. HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING[J]. Acta Metall Sin, 2016, 52(3): 307-312.

全文: PDF(4194 KB)   HTML
摘要: 

对3%无取向硅钢进行异步轧制以实现表面纳米化, 分别在真空和渗硅条件下进行不同参数的热处理, 研究显微组织,物相和成分的演变. 结果表明: 经过速比为1.31, 轧制道次为20, 总压下量为91%的异步轧制后, 板材表面形成了尺寸为10~20 nm, 取向呈随机分布的纳米晶; 在真空下升温, 表面纳米晶的再结晶温度明显提高; 在渗硅剂(Si粉+1% (质量分数)卤化物)中升温, 表面纳米晶的再结晶温度因外部Si原子沿着缺陷的快速扩散而进一步提高, 使得纳米晶界面能够在更高的温度下(750 ℃)发挥扩散通道作用, 促进Si原子的扩散, 并在显著地降低保温时间和(作为催化剂的)卤化物含量的同时获得致密的渗Si层.

关键词 硅钢异步轧制表面纳米化热稳定性渗硅    
Abstract

Heat stability of nanostructure can be related to alloy element, in order to investigate the effect of external element diffusion, asymmetrical rolling was adopted to roll 3% non-oriented silicon steel to realize the surface nanocrystallization, heat-treatment with different parameters was carried out for the rolled sheet in vacuum and Si+1% (mass fraction) halide powder respectively, and different techniques were used to examine the microstructural evolution, phase transformation and Si distribution along the depth. Experimental results show that nanocrystallines about 10~20 nm in size with random orientations form in the top-surface layer after the asymmetrical rolling with the mismatch speed ratio 1.31 and rolling passes 20 for 91% reduction. In the heating process in vacuum, the recrystallization temperature of the nanocrystallines in the top surface layer of the rolled sheet was found to increase obviously comparing with that obtained after keeping at this temperature for a long duration. In the heating process in Si+1% halide powder, a further enhancement of the recrystallization temperature was observed for the nanocrystallines in the top surface layer of the rolled sheet due to the fastly diffusion of Si atoms along the defaults, then the larger volume fraction of grain boundaries can act as fast diffusion channel at higher temperature (750 ℃), that can accelerate the diffusion of Si atoms, therefore dense compound layer can be obtained within shorter duration and with lower fraction of halide (acts as activator).

Key wordssilicon steel    asymmetric rolling    surface nanocrystallization    heat stability    siliconizing
收稿日期: 2015-04-21     
基金资助:*国家高技术研究发展计划资助项目2012AA03A505
图1  异步轧制硅钢及经过Si+1%卤化物中升温至750 ℃时板材表面的TEM像和SAED谱
图2  异步轧制硅钢在真空中不同温度保温30 min后横截面的OM像
图3  异步轧制硅钢在真空中升温至不同温度后横截面的OM像
图4  异步轧制硅钢在Si+1%卤化物中升温至不同温度后横截面的OM像
图5  异步轧制硅钢在Si+1%卤化物中升温至不同温度后表面的XRD谱
图6  异步轧制硅钢在Si+1%卤化物中升温至750 ℃后横截面的SEM像
图7  异步轧制硅钢在渗硅剂中经过不同参数热处理后横截面的SEM像
[1] Ge L L, Tian N, Lu Z X, You C Y.Appl Surf Sci, 2013; 286: 412
[2] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[3] Wang Z B, Lu K, Wilde G, Divinski S V. Acta Mater, 2010; 58: 2376
[4] Lu S D, Wang Z B, Lu K.Mater Sci Eng, 2010; A527: 995
[5] Surganaragana C, Froes F H.Nanostruct Mater, 1992; 11: 196
[6] Lian J, Valiev R Z, Baudelet B.Acta Metall Mater, 1995; 43: 4165
[7] Klement U, Erb U, Sherik A M E, Aust K T.Mater Sci Eng, 1995; A203: 177
[8] Inami T, Okuda S, Maeta H, Ohtsuka H.Mater Trans JIM, 1998; 39: 1029
[9] Lu K, Wang J T, Wei W D.J Phys, 1992; 25D: 808
[10] Eckert J, Holzen J C, Johnson W L.J Appl Phys, 1993; 73: 131
[11] Lu K, Dong Z F, Bakongi I, Cziraki A.Acta Metall Mater, 1995; 43: 2641
[12] Haiji H, Okada K, Hiratani T, Abe M, Ninomiya M.J Magn Magn Mater, 1996; 160: 109
[13] Phway T P P, Moses A J.J Magn Magn Mater, 2008; 320: 611
[14] Liang Y F, Ye F, Lin J P, Wang Y L, Chen G L.J Alloys Compd, 2010; 491: 268
[15] Viala B, Degauque J, Fagot M, Baricco M, Ferrara E, Fiorillo F.Mater Sci Eng, 1996; A212: 62
[16] Yáñez T R, Ruiz D, Barros J, Houbaert Y, Colás R.Mater Sci Eng, 2007; A447: 27
[17] Takada Y, Abe M, Masuda S, Inagaki J.J Appl Phys, 1988; 64: 5367
[18] Mo C G, Liu G, Huang P, Zuo L.Iron Steel, 2012; 47(3): 65
[18] (莫成刚, 刘刚, 黄璞, 左良. 钢铁, 2012; 47(3): 65)
[19] Liu G, Ma Y, Zhang R J, Wang X L, Sha Y H, Zuo L.Acta Metall Sin, 2014; 50: 1071
[19] (刘刚, 马野, 张瑞君, 王小兰, 沙玉辉, 左良. 金属学报, 2014; 50: 1071)
[20] Mai Y J, Jie X H, Liu L L, Yu N, Zheng X X.Appl Surf Sci, 2010; 256: 1972
[21] Zhang J, Ou X B.Trans Nonferrous Met Soc China, 2010; 20: 1340
[22] Wang A X, Liu G, Zhou L, Wang K, Yang X H, Li Y.Acta Metall Sin, 2005; 41: 577
[22] (王爱香, 刘刚, 周蕾, 王科, 杨晓华, 李瑛. 金属学报, 2005; 41: 577)
[23] Liu G, Liu J Y, Wang X L, Wang F H, Zhao X, Zuo L.Acta Metall Sin, 2013; 49: 599
[23] (刘刚, 刘金阳, 王小兰, 王福会, 赵骧, 左良. 金属学报, 2013; 49: 599)
[24] Wang Z B, Tao N R, Tong W P, Lu J, Lu K.Acta Mater, 2003; 51: 4319
[25] Tong W P, Tao N R, Wang Z B, Lu J, Lu K.Science, 2003; 289: 686
[26] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[5] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[6] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
[7] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[8] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[11] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[12] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[13] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[14] 曾贵民,罗海文,李军,龚坚,黎先浩,王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究[J]. 金属学报, 2017, 53(6): 743-750.
[15] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.