Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1477-1483    DOI: 10.11900/0412.1961.2016.00073
  本期目录 | 过刊浏览 |
超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*
王庆娟(),周晓,梁博,周滢
西安建筑科技大学冶金工程学院, 西安 710055
HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY
Qingjuan WANG(),Xiao ZHOU,Bo LIANG,Ying ZHOU
School of Metallurgical and Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
引用本文:

王庆娟,周晓,梁博,周滢. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*[J]. 金属学报, 2016, 52(11): 1477-1483.
Qingjuan WANG, Xiao ZHOU, Bo LIANG, Ying ZHOU. HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY[J]. Acta Metall Sin, 2016, 52(11): 1477-1483.

全文: PDF(1331 KB)   HTML
摘要: 

研究了2种变形处理方式下的超细晶Cu-Cr-Zr合金从室温到600 ℃的拉伸性能、断口微观组织特征及其断裂机制. 结果表明: 经4道次等径弯曲通道挤压(ECAP)+时效+4道次ECAP变形处理的合金(No.1试样)的抗拉强度随拉伸温度的升高而降低, 室温时, 合金抗拉强度为577.17 MPa, 延伸率为14.6%; 在300 ℃开始发生动态再结晶软化, 抗拉强度迅速减小, 到600 ℃时抗拉强度仅为59.12 MPa. 经过8道次ECAP+时效变形处理的合金(No.2试样), 室温抗拉强度为636.71 MPa, 延伸率为12.1%; 从400 ℃开始析出相对晶界的钉扎作用开始逐渐减弱, 抗拉强度大幅降低, 600 ℃时的抗拉强度为65.20 MPa. No.2试样比No.1试样具有更好的室温性能和热稳定性. 2种方式处理下合金延伸率随拉伸温度的升高而升高, 在高温下都表现出超塑性. 高温拉伸断口微观形貌为大量密集、深入的韧窝, 其高温断裂机制为微孔聚集的韧性断裂.

关键词 Cu-Cr-Zr合金,超细晶,高温拉伸,断裂机制    
Abstract

Cu-Cr-Zr alloy usually applys to the complex environment at high temperature. The mechanical behaviors of alloy are different from the condition of normal temperature. At high temperature, grains and precipitates of ultra-fine grain Cu-Cr-Zr alloy become coarse and it would affect the hot deformation behavior of alloy. To solve the thermal stability of the ultra-fine grain materials, the grain growth mechanism and the driving force of ultra-fine grain materials must be studied, as well as trace elements on the thermal stability mechanism. Tensile properties, microstructure of fracture and fracture mechanism of ultra-fine grain (UFG) Cu-Cr-Zr alloy made by two different treatment methods were studied at the temperature range of room temperature to 600 ℃. The results show that the ultimate tensile strength (UTS) of alloys decreases with increasing temperature. The UTS and elongation of No.1 alloys are about 577.17 MPa and 14.6% at room temperature, respectively. And No.1 alloy start to occur dynamic recrystallization and UTS decreases fast at 300 ℃. The UTS of No.1 alloy are only 59.12 MPa at 600 ℃. The UTS and elongation of No.2 alloy are about 636.71 MPa and 12.1% at room temperature, respectively. The pinning effect by precipitation on grain boundary in the No.2 alloy begins to weaken at 400 ℃. The UTS of No.2 alloy decreases fast and are only 65.20 MPa at 600 ℃. Compared to No.1 alloy, No.2 alloy have better room temperature property and thermal stability. The elongation of all alloys increases with increasing temperature and show superplasticity on elevated temperature. The high temperature tensile fracture morphologies are an intense and deep dimple pattern. The high temperature fracture mechanism is ductile fracture by gathered microporous.

Key wordsCu-Cr-Zr    alloy,    ultra-fine    grain,    high    temperature    tension,    fracture    mechanism
收稿日期: 2016-03-04     
基金资助:* 国家自然科学基金资助项目51104113
图1  2种等径弯曲通道挤压(ECAP)变形与时效工艺下Cu-Cr-Zr合金的微观组织
图2  2种ECAP变形与时效工艺下Cu-Cr-Zr合金400 ℃拉伸变形后的微观组织
图3  2种ECAP变形与时效工艺下Cu-Cr-Zr合金的拉伸应力-应变曲线 (a) specimen No.1 (b) specimen No.2
图4  2种ECAP变形与时效工艺下Cu-Cr-Zr合金的抗拉强度和延伸率随温度的变化
图5  No.1试样在不同温度下的拉伸断口形貌
图6  No.2试样在不同温度下的拉伸断口形貌
[1] Zhang Y, Li R Q, Xu Q Q, Tian B H, Liu Y, Liu P, Chen X H.Chin J Nonferrous Met, 2014; 24: 745
[1] (张毅, 李瑞卿, 许倩倩, 田保红, 刘勇, 刘平, 陈小红. 中国有色金属学报, 2014; 24: 745 )
[2] Pan Z Y, Chen J B, Li J F.Trans Nonferrous Met Soc China, 2015; 25: 1206
[3] Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114
[4] Huang F X, Ma J S, Geng Z T, Ning H L, Lingmu Y F, Guo S M, Yu X T, Wang T, Li H, Li X C.Rare Met Mater Eng, 2004; 33: 267
[4] (黄福祥, 马莒生, 耿志挺, 宁洪龙, 铃木洋夫, 郭淑梅, 余雪涛, 王涛, 李红, 李鑫成. 稀有金属材料与工程, 2004; 33: 267)
[5] Huang F X, Ma J S, Ning H L.Scr Mater, 2003; 48: 97
[6] Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177
[7] Hatakeyama M, Toyama T, Yang J. J Nucl Mater#/magtechI#, 2009; 386-388: 852
[8] Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V I.Acta Mater, 2002; 50: 1639
[9] Segal V M, Reznikov V I, Drobyshevskiy A E.Russian Metall (Eng Trans), 1981; 1: 99
[10] Xie H F, Mi X J, Huang G J, Gao B D, Yin X Q, Li Y F.Rare Met Mater Eng, 2012; 41: 1549
[10] (解浩峰, 米绪军, 黄国杰, 高宝东, 尹向前, 李艳锋. 稀有金属材料与工程, 2012; 41: 1549)
[11] Song D, Ma A B, Jiang J H, Lin P H, Yang D H.Trans Nonferrous Met Soc China, 2009; 19: 1065
[12] Abib K, Balanos J A M, Alili B, Bradai D.Mater Charact, 2016; 112: 252
[13] Zha M, Li Y J, Mathiesen R, Bjorge R, Roven H V.Trans Nonferrous Met Soc China, 2014; 24: 2301
[14] Zhang Y, Volinsky A A, Tran T H, Chai Z, Liu P, Tian B H, Liu Y.Mater Sci Eng, 2016; A650: 248
[15] Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114
[16] Saray O.Mater Sci Eng, 2016; A656: 120
[17] Leon K V, Munoz-Morris M A, Morris D G.Mater Sci Eng, 2012; A536: 181
[18] Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35
[19] Zhu Y T, Lowc T C.Mater Sci Eng, 2000; A291: 46
[20] Mishra R S, Valiev R Z, McFadden S X, Islamgaliev R K, Mukherjee A K.Scr Mater, 1999; 40: 1151
[21] Shen Y F, Guan R G, Zhao Z Y, Misra R D K.Acta Mater, 2015; 100: 247
[22] Cheng J Y, Shen B, Yu F X.Mater Charact, 2013; 81: 68
[23] Su J H, Dong Q M, Liu P, Li H J, Kang B X.Mater Sci Technol, 2003; 19: 529
[24] Wang Z C, Wang W L, Luo S, Zhu M Y.Chin J Nonferrous Met, 2014; 24: 115
[24] (王志成, 王卫领, 罗森, 朱苗勇. 中国有色金属学报, 2014; 24: 115)
[25] Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 28
[25] (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 28)
[1] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[2] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[3] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[4] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[5] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[6] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[7] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[8] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[9] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[10] 马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2017, 53(5): 549-558.
[11] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[12] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[13] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[14] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[15] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.