Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1326-1332    DOI: 10.11900/0412.1961.2016.00341
  本期目录 | 过刊浏览 |
低合金钢TMCP中相变热力学/动力学相关性探讨*
刘峰(),王慷
西北工业大学凝固技术国家重点实验室, 西安 710072
DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS
Feng LIU(),Kang WANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS[J]. Acta Metall Sin, 2016, 52(10): 1326-1332.

全文: PDF(1513 KB)   HTML
  
摘要: 

基于经典相变理论, 分析相变中关键热力学/动力学参量, 提出相变热力学/动力学相关性概念; 结合低合金钢控制轧制与控制冷却工艺(TMCP)涉及相变的实验研究, 总结热力学驱动力、动力学能垒与相变条件间关联; 进而探讨相变中热力学/动力学相关性; 最后对热力学/动力学相关性的潜在应用进行了展望.

关键词 低合金钢相变热力学动力学相关性    
Abstract

Thermo-mechanical control process (TMCP) plays a key role in the manufacturing of hot-rolled low-alloy steels, as well as the optimization of microstructures and properties. However, the various phase transformations involved in the TMCP of steels and its impact on the microstructures/properties are still not fully understood. In the present work, on the basis of classical theories of phase transformations and previous experimental results, the key parameters controlling the phase transformation processes are analyzed, from which the correlation between thermodynamics and kinetics of the phase transformations are proposed; then, this correlation in the phase transformations of low-alloy steels and its effect on the competing mechanisms of transformations are analyzed; based on well-established theories (i.e. the first-principles calculations and the double well potential in phase field methods), the energetics of the Bain path of Na and the fcc/bcc transformation of Fe are calculated to demonstrate the correlation between thermodynamics and kinetics. Eventually, the current work is summarized and the potential applications of the correlation between thermodynamics and kinetics of phase transformations are proposed.

Key wordslow-alloy steel    phase transformation    thermodynamics    kinetics    correlation
收稿日期: 2016-08-01     
ZTFLH:     
基金资助:* 国家自然科学基金项目51431008和凝固技术国家重点实验室自主研究课题项目117-TZ-2015资助
图1  Fe-0.2C-1Mn-1Si 低合金钢经1050 ℃等温5 min之后以不同冷速冷却到室温时的马氏体组织
图2  金属Na的Bain转变过程中能量变化受体积影响
图3  基于相场法双阱势函数分析纯Fe的fcc/bcc转变的界面能量变化
图4  TMCP调控中加工条件-相变理论-组织性能一体化和定量化研究的逻辑关系图
[1] Herlach D M.Mater Sci Eng Rep, 1994; 12: 172
[2] Zhao J C, Notis M R.Mater Sci Eng Rep, 1995; 15: 135
[3] Willnecker R, Herlach D M, Feuerbacher B.Phys Rev Lett, 1989; 62: 2707
[4] Liu Y C, Sommer F, Mittemeijer E J.Acta Mater, 2006; 54: 3383
[5] Bhadeshia H K D H.Mater Sci Eng, 1999; A273: 58
[6] Nishiyama Z. Martensitic Transformation.New York: Academic Press, 1978: 211
[7] Xu Z Y.Phase Transformation in Materials. Beijing: Higher Education Press, 2013: 43
[7] (徐祖耀. 材料相变. 北京:高等教育出版社, 2013: 43)
[8] Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations-Their Thermodynamic Basis. Cambridge: Cambridge University Press, 1998: 80
[9] Liu F, Sommer F, Bos C, Mittemeijer E J.Int Mater Rev, 2007; 52: 193
[10] Liu F, Wang H F, Song S J, Zhang K, Yang G C, Zhou Y H.Prog Phys, 2012, 32: 1
[11] Christian J W.The Theory of Transfomation in Metals and Alloys, Part 1: Equilibrium and General Kinetics Theory. Oxford: Pergamon Press, 2002: 422, 1015
[12] Kelton F.Solid State Phys, 1991; 45: 75
[13] Weeks J D, Gilmer G H.Adv Chem Phys, 1979; 40: 157
[14] Turnbull D.J Phys Chem, 1962; 66: 609
[15] Aziz M J, Boettinger W J.Acta Metall Mater, 1994; 42: 527
[16] Eyring H.J Chem Phys, 1995; 3: 107
[17] Liu F, Sommer F, Mittemeijer E J.Acta Mater, 2004; 52: 3207
[18] Zhang J M.J Phys, 1984; F14: 769
[19] Zhao Y T, Shang C J, Yang S W, Wang X M, He X L.Mater Sci Eng, 2006; A433: 169
[20] Madariaga I, Gutiérrez I, García-de A C, Capdevila C.Scr Mater, 1999; 41: 229
[21] Zhao Y T, Shang C J, He X L, Guo H.Acta Metall Sin, 2006; 42: 54
[21] (赵运堂, 尚成嘉, 贺信莱, 郭晖. 金属学报, 2006; 42: 54)
[22] Tang W J, Zheng L, Wang Z Q, Zheng F.Baosteel Technol, 2010; (2): 45
[22] (唐文军, 郑磊, 王自强, 郑芳. 宝钢技术, 2010; (2): 45)
[23] Delaey L.In: Kostorz G ed., Phase Transformations in Materials, Weinheim: Wiley-Vch, 2001: 630
[24] Hong M, Wang K, Chen Y Z, Liu F.J Alloys Compd, 2015; 647: 763
[25] Zhao M C, Yang K, Xiao F R, Shan Y Y.Mater Sci Eng, 2003; A355: 126
[26] Smith Y E, Siebert C A.Metall Trans, 1971; 2: 1711
[27] Wang Z D, Qu J B, Liu X H, Wang G D.Acta Metall Sin, 1998; 11: 121
[27] (王昭东, 曲锦波, 刘相华, 王国栋. 金属学报, 1998; 11: 121)
[28] Weng Y Q.Ultra-Fine Grained Steels. Beijing: Metallurgical Industry Press, and Berlin: Springer-Verlag GmbH, 2009: 86
[29] Matsumura Y, Yada H.Trans ISIJ, 1987; 27: 492
[30] Yada H, Li C M, Yamagata H.ISIJ Int, 2000; 40: 200
[31] Yu W, Chen Y L, Chen Y L, Liao D J.J Univ Sci Technol Beijing, 2002; 24: 643
[31] (余伟, 陈银莉, 陈雨来, 廖东骏. 北京科技大学学报, 2002; 24: 643)
[32] Wang X D, Huang B X, Wang L, Rong Y H.Metall Mater Trans, 2008; 39A: 1
[33] Kelly M J.J Phys, 1979; 9F: 1921
[34] Henkelman G, Uberuaga B P, Jónsson H.J Chem Phys, 2000; 113: 9901
[35] Okatov S V, Kuznetsov A R, Gornostyrev Y N, Urtsev V N, Katsnelson M I.Phys Rev, 2009; 79B: 094111
[36] Kresse G, Furthmuller J.Phys Rev, 1996; 54B: 11169
[37] Methfessel M, Paxton A T.Phys Rev, 1989; 40B: 3616
[38] Perdew J P, Burke K, Ernzerhof M.Phys Rev Lett, 1996; 77: 3865
[39] Boettinger W J, Warren J A, Beckermann C, Karma A.Annu Rev Mater Res, 2002; 32: 163
[40] Peter G B, Christoph D, Chandler D.PNAS, 2000; 97: 5877
[41] Radhakrishnan R, Trout B L.In: Yip S ed., Handbook of Materials Modeling, Netherlands: Springer, 2005: 1613
[42] Heo T W, Chen L Q.Acta Mater, 2014; 76: 68
[43] Dinsdale A T.Calphad, 1991; 15: 317
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[10] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[11] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[12] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[13] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.