Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1279-1296    DOI: 10.11900/0412.1961.2016.00323
  本期目录 | 过刊浏览 |
镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*
荆涛1(),帅三三1,汪明月2,郑启威1
1 清华大学材料学院先进成形教育部重点实验室, 北京 100084
2 北京航空航天大学国际交叉研究中心, 北京 100191
RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING
Tao JING1(),Sansan SHUAI1,Mingyue WANG2,Qiwei ZHENG1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
引用本文:

荆涛, 帅三三, 汪明月, 郑启威. 镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*[J]. 金属学报, 2016, 52(10): 1279-1296.
Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING[J]. Acta Metall Sin, 2016, 52(10): 1279-1296.

全文: PDF(14657 KB)   HTML
  
摘要: 

Mg作为一种典型的hcp结构金属, 其枝晶形貌和生长取向受到多种因素的影响, 目前针对镁合金中α-Mg 枝晶生长模型的描述以及多样性的起源等问题的研究都比较缺乏, 基于此, 本文综述了本课题组在镁合金凝固微观组织结构三维表征方面取得的研究成果. 借助同步辐射X射线微观断层扫描技术以及相场数值模型, 研究了镁合金凝固过程中α-Mg (X)枝晶生长选择多样性的形成机理以及固溶合金元素(Al, Ca, Zn 和Sn 等)、固溶元素含量(溶质浓度)等因素对α-Mg 枝晶生长选择和演化的影响. 研究结果表明, 固溶元素、固溶元素含量等因素都会对镁合金中α-Mg三维枝晶形貌和择优取向产生重要影响. 在Mg-Ca和Mg-Al (hcp-fcc)合金中, 枝晶倾向于以<112?0>或<224?5>为择优方向生长. 在Mg-Sn (hcp-bct)合金中, 等轴生长的枝晶沿着基面上<112?0>和偏离基面的<112?X> (X2)方向形成一种18次分支的结构, 在Mg-Zn (hcp-hcp)合金中, α-Mg枝晶的择优取向会随着Zn含量的增加, 从<112?0>方向朝偏离基面的<112?1>方向发生连续转变, 并在转变的过渡区, 发现了超支化的藻状枝晶结构, 其原因可能是高各向异性Zn元素的引入带来的固/液界面自由能各向异性的变化. 研究结果从一定程度上揭示了镁合金凝固过程中α-Mg枝晶生长形貌和分支结构选择多样性的规律. 同时基于快速X射线成像技术率先开展了镁合金凝固过程三维微观结构演化原位表征研究, 获得了镁合金凝固过程三维枝晶的生长演化过程.

关键词 镁合金凝固三维枝晶形貌相场模拟X射线微观断层扫描    
Abstract

As a typical hexagonal close-packed structure metal, the dendritic morphology and preferential orientation of Mg would be influenced by many factors. Current investigations still fall short on the thorough description of the diversity and complexity of dendrites growth patterns and their origination, therefore, this paper re viewed recent research progress of this group on 3D characterization of microstructure in solidified magnesium alloys. Using synchrotron X-ray tomography and phase-field modeling, the formation mechanism of the diverse α-Mg (X) dendrites and the affections of alloying element (such as Al, Ca, Zn, and Sn), solute concentration on the growth selection and evolution of α-Mg dendrites during solidification were studied. The results indicate that the alloying elements and solute concentration would impose a significant influence on the morphology and orientation selection of the primary α-Mg dendrites. In Mg-Ca and Mg-Al (hcp-fcc) alloys, dendrites tend to grow with preferred orientation of <112?0> or <224?5> which is in good agreement with the traditional expected direction. The equiaxed growth dendrites in Mg-Sn (hcp-bct) alloys evolve as a structure with 18 branches, six of which grow on the basal plane along <112?0> and the remaining 12 along <112?X> (X≈2) off the basal plane. For the case in Mg-Zn alloys, an orientation transition from <112?0> on the basal plane to <112?1> off the basal plane are observed with the increasing addition of Zn alloying element, a hyperbranched seaweed structure is also revealed with an interim composition. A probable explanation is that the addition of high anisotropy Zn would slightly alter the anisotropy of interfacial free energy in front of the growth interface which results in a dendrite orientation transition (DOT). These findings partially reveal the underlying formation mechanism and origination of the diversity dendritic morphologies and branching structures of α-Mg dendrites in Mg alloys. Furthermore, with the fast X-ray imaging facility, in situ observations of the 3D microstructure evolution in Mg alloys during solidification are also carried out and the evolution of α-Mg dendrites are obtained for further analysis.

Key wordsMg alloy    solidification    3D dendritic morphology    phase-field simulation    X-ray tomography
收稿日期: 2016-07-22     
ZTFLH:     
基金资助:* 国家自然科学基金项目51175292和先进成形制造全流程建模与仿真创新平台项目2012ZX04012-011资助
Crystal structure Preferred orientation Example
fcc <100> Al, Cu, Ni, γ-Fe
bcc <100> δ-Fe, succinonitrile, NH4Cl
bct <110> Sn
hcp <101?0> H2O, Zn
<112?0> Mg
表1  不同金属材料枝晶生长晶体学择优取向[34]
图1  Mg-9Al-0.7Zn合金普通铸态和淬火组织的OM像
图2  X射线微观断层扫描成像原理[39]
图3  上海光源和BL13W1 X射线成像线站设备图
图4  实验图片处理过程及操作功能选择
图5  通过2Dlivewire算法利用X射线断层扫描术重构的三维α-Mg树枝晶形貌[23,29]
图6  Mg-Ca 合金中α-Mg 枝晶形核基底选择和三维枝晶形貌
图7  等轴生长α-Mg(Ca)合金枝晶微观结构
图8  不同Zn含量的Mg-Zn合金中α-Mg三维枝晶形貌和枝晶分支结构
图9  Mg-50%Zn合金中α-Mg枝晶生长方向
图10  Mg-Zn合金枝晶臂偏离基面的取向差以及Al-Zn合金中枝晶臂偏离<100>方向的取向差[35]
图11  Mg-Sn合金等轴生长α-Mg枝晶形貌、分支结构和生长模型
图12  实验观察到的等轴生长的镁合金枝晶生长模型
图13  基于枝晶生长模型提出的相场模拟各向异性函数模型
图14  相场模拟Mg-25%Zn枝晶生长结果
图15  金相实验结果与相场模拟计算结果的对比
图16  Mg-15%Sn合金中α-Mg枝晶的真实三维组织和相场模拟结果对比
图17  冷却速率为3 ℃/min时Mg-15%Sn合金凝固过程不同时刻和温度的二维枝晶形貌
图18  冷却速率为12 ℃/min时 Mg-15%Sn合金凝固过程不同时刻和温度的二维枝晶形貌
图19  冷却速率为3 ℃/min时Mg-15%Sn合金凝固过程中单个枝晶三维形貌演化
图20  冷却速率为12 ℃/min时Mg-15%Sn合金凝固过程中单个枝晶三维形貌演化
[1] Chen Z H, Yan H G, Chen J H. Magnesium Alloys.Beijing: Chemical Industry Press, 2004: 2
[1] (陈振华, 严红革, 陈吉华. 镁合金. 北京:化学工业出版社, 2004: 2)
[2] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[3] Pollock T M.Science, 2010; 328: 986
[4] Flemings M C.Metall Trans, 1974; 5: 2121
[5] Flemings M C.Mater Trans, 2005; 46: 895
[6] Glicksman M E.Principles of Solidification: an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science & Business Media, 2010: 101
[7] Mendoza R.PhD Dissertation, Northwestern University, Evanston, 2004
[8] Mendoza R, Savin I, Thornton K, Voorhees P W.Nat Mater, 2004; 3: 385
[9] Kammer D, Voorhees P W.Acta Mater, 2006; 54: 1549
[10] Xu W, Ferry M, Mateescu N, Cairney J M, Humphreys F J.Mater Charact, 2007; 58: 961
[11] Rowenhorst D J, Gupta A, Feng C R, Spanos G.Scr Mater, 2006; 55: 11
[12] Rowenhorst D J, Lewis A C, Spanos G.Acta Mater, 2010; 58: 5511
[13] Spanos G, Geltmacher A B, Lewis A C, Bingert J F, Mehl M, Papaconstantopoulos D, Mishin Y, Gupta A, Matic P.Mater Sci Eng, 2007; A452: 558
[14] Spanos G, Rowenhorst D J, Lewis A C, Geltmacher A B.MRS Bulletin, 2008; 33: 597
[15] Macsleyne J, Uchic M D, Simmons J P, Graef M D.Acta Mater, 2009; 57: 6251
[16] Wilson J R, Kobsiriphat W, Mendoza R, Chen H Y, Hiller J M, Miller D J, Thornton K, Voorhees P W, Adler S B, Barnett S A.Nat Mater, 2006; 5: 541
[17] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849
[18] Maire E, Withers P J.Int Mater Rev, 2014; 59: 1
[19] Manuwong T, Zhang W, Kazinczi P L, Bodey A J, Rau C, Mi J.Metall Mater Trans, 2015; 46A: 2908
[20] Puncreobutr C, Lee P D, Hamilton R W, Cai B, Connolley T.Metall Mater Trans, 2013; 44A: 5389
[21] Terzi S, Salvo L, Suery M, Dahle A K, Boller E.Acta Mater, 2010; 58: 20
[22] Tolnai D, Townsend P, Requena G, Salvo L, Lendvai J, Degischer H P.Acta Mater, 2012; 60: 2568
[23] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Scr Mater, 2011; 65: 855
[24] Wang M Y, Xu Y J, Jing T, Peng G Y, Fu Y N, Chawla N.Scr Mater, 2012; 67: 629
[25] Maire E, Babout L, Buffiere J, Fougeres R.Mater Sci Eng, 2001; A321: 216
[26] Pettersen K, Lohne O, Ryum N.Metall Mater Trans, 1990; 21A: 221
[27] Pettersen K, Ryum N.Metall Mater Trans, 1989; 20A: 847
[28] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T.Mater Charact, 2016; 111: 170
[29] Wang M Y, Jing T, Liu B C.Scr Mater, 2009; 61: 777
[30] Wang M Y, Xu Y J, Zheng Q W, Wu S J, Jing T, Chawla N.Metall Mater Trans, 2014; 45A: 2562
[31] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Metall Micro Ana, 2012; 1: 7
[32] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T, Fu Y.Mater Charact, 2016; 118: 304
[33] Shuai S S, Guo E Y, Wang M Y, Callaghan M D, Jing T, Zheng Q W, Lee P D.Metall Mater Trans, 2016; 47A: 4368
[34] Gonzales F, Rappaz M.Metall Mater Trans, 2006; 37A: 2797
[35] Haxhimali T, Karma A, Gonzales F, Rappaz M.Nat Mater, 2006; 5: 660
[36] Dantzig J A, Rappaz M.Solidification. Lausanne: EPFL Press, 2009: 289
[37] Mathiesen R H, Arnberg L, Bleuet P, Somogyi A.Metall Mater Trans, 2006; 37A: 2515
[38] Ludwig O, Dimichiel M, Salvo L, Suery M, Falus P.Metall Mater Trans, 2005; 36A: 1515
[39] Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K.Acta Mater, 2009; 57: 2300
[40] Kak A C.Digital Image Processing Techniques. Orlando: Acdemic Press Inc; 1984: 111
[41] SSRF
[42] ImageJ.
[43] Avizo
[44] Karma A, Rappel W J.Phys Rev Lett, 1996; 77: 4050
[45] Karma A, Rappel W J.Phys Rev, 1998; 57E: 4323
[46] Boettinger W J, Warren J A, Beckermann C, Karma A.Anu Rev Mater Res, 2002; 32: 163
[47] Ramirez J C, Beckermann C, Karma A, Diepers H J.Phys Rev, 2004; 69E: 051607
[48] Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J.Phys Rev, 2006; 73B: 1
[49] Xu W, Horsfield A P, Wearing D, Lee P D.J Alloys Compd, 2015; 650: 228
[50] Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M.Energy, 2014; 72: 414
[51] Friedli J, Fife J L, Di Napoli P, Rappaz M.Metall Mater Trans, 2013; 44A: 5522
[52] Friedli J, Fife J L, Di Napoli P, Rappaz M.IOP Conf Series: Mater Sci Eng, 2012; 33: 012034
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[7] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[8] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[9] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[13] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[14] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[15] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.