Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1249-1258    DOI: 10.11900/0412.1961.2016.00315
  本期目录 | 过刊浏览 |
Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*
孙军(),张金钰,吴凯,刘刚
西安交通大学金属材料强度国家重点实验室, 西安 710049
SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS
Jun SUN(),Jinyu ZHANG,Kai WU,Gang LIU
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. Acta Metall Sin, 2016, 52(10): 1249-1258.

全文: PDF(1051 KB)   HTML
  
摘要: 

纳米金属多层膜材料已成为目前高性能微元器件以及互连结构的核心材料体系, 其服役过程中的变形损伤与断裂是导致系统失效的关键因素. 以本课题组近年来的研究结果为基础, 结合当前国内外有关金属多层膜微柱体塑性变形行为研究的最新进展, 阐述了金属多层膜微柱体微观结构-尺寸约束-服役性能三者之间的关联性, 揭示了金属多层膜微柱体变形模式与损伤的内在规律, 归纳了晶体/晶体与晶体/非晶两类层状结构材料加工硬化/软化行为的微观机理, 并对纳米金属多层膜研究的发展趋势进行了展望.

关键词 纳米金属多层膜微柱体塑性变形形变损伤尺寸效应    
Abstract

The nanostructured metallic multilayers (NMMs) are widely used as essential components of high performance microelectronics and interconnect structures. The deformation and damage of NMMs is the essential factor leading to the structural failure of these systems. In this paper, based on these experimental results achieved by the authors, as well as the state-of-the-art and progress at home and abroad in the plastic deformation behavior of micropillars of Cu-based NMMs, the correlation of microstructure-size constraint-mechanical performance in the Cu-based nanolayered micropillars is illustrated. The universality of their deformation modes and internal damage mechanisms are revealed, and the work hardening /softening behaviors of two types of nanolaminates, including crystalline/crystalline and crystalline/amorphous NMMs, are summarized. Finally, a brief prospect on the studies of NMMs in future is suggested.

Key wordsnanostructured metallic multilayer    micro-pillar    plastic deformation    fracture and damage    size effect
收稿日期: 2016-07-19     
ZTFLH:     
基金资助:* 国家重点基础研究发展计划项目 2010CB631003, 国家自然科学基金项目51571157, 51321003, 51322104和51201123, 高等学校学科创新引智计划项目B06025及陕西省自然科学基金基础研究计划项目2015JM5158资助
图1  晶体/晶体(fcc/bcc, fcc/fcc, fcc/hcp)与晶体/非晶体系多层膜硬度(H)与单层厚度(h)的关系[33].
图2  晶体/晶体与晶体/非晶体系纳米多层膜微柱体最大强度与h和?的关系
图3  不同微观结构Cu与Cu系多层膜微柱体的应变速率敏感性指数与塑性应变量的关系[49]
图4  金属单层/多层薄膜材料θ-h和单晶Cu微柱体θ-?关系图[38,39,57]及不同多层膜微柱体n-h和多晶Cu n-d关系[58-60]
图5  不同体系多层膜微柱变形模式图
图6  Cu/Zr多层膜微柱形变损伤机制图[38]
图7  Cu/Cu-Zr晶体/非晶多层膜微柱变形模式图
[1] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[2] Li Y P, Zhang G P.Acta Mater, 2010; 58: 3877
[3] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2011; 59: 7368
[4] Romig Jr A D, Dugger M T, McWhorter P J.Acta Mater, 2003; 51: 5837
[5] Fullwood D T, Niezgoda S R, Adams B L, Kalidindi S R.Prog Mater Sci, 2010; 55: 477
[6] Beyerlein I J, Demkowicz M J, Misra A, Uberuaga B P.Prog Mater Sci, 2015; 74: 125
[7] Greer J R, de Hosson J T M.Prog Mater Sci, 2011; 56: 654
[8] Zhu T, Li J.Prog Mater Sci, 2010; 55: 710
[9] Uchic M D, Shade P A, Dimiduk D M.Annu Rev Mater Res, 2009; 39: 361
[10] Nan C W.Heterogeneous Materials Physics: Microstructure and Performance. Beijing: Science Press, 2005: 1
[10] (南策文. 非均质材料物理-显微结构-性能关联. 北京: 科学出版社, 2005: 1)
[11] Cammarata R C.Prog Surf Sci, 1994; 46: 1
[12] Hoagland R G, Kurtz R J, Henager C H.Scr Mater, 2004; 50: 775
[13] Hoagland R G, Mitchell T E, Hirth J P, Kung H.Phil Mag, 2002; 82: 643
[14] Wang J, Hoagland R G, Hirth J P, Misra A.Acta Mater, 2008; 56: 5685
[15] Wang J, Misra A, Hoagland R G, Hirth J P.Acta Mater, 2012; 60: 1503
[16] Wang Y M, Li J, Hamza A V, Barbee J T W.Proc Natl Acad Sci USA, 2007; 104: 11155
[17] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J.Scr Mater, 2010; 63: 101
[18] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2012; A543: 139
[19] Zhang J Y, Zhang P, Zhang X, Wang R H, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2012; A545: 118
[20] Zhang J Y, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J.Mater Sci Eng, 2012; A552: 392
[21] Wu K, Zhang J Y, Liu G, Zhang P, Cheng P M, Zhang G J, Sun J.Acta Mater, 2013; 61: 7889
[22] Wu K, Zhang J Y, Zhang P, Wang Y Q, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2014; A613: 130
[23] Wu K, Zhang J Y, Li J, Wang Y Q, Liu G, Sun J.Acta Mater, 2015; 100: 344
[24] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J.Scr Mater, 2007; 57: 117
[25] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P.J Mater Res, 2009; 24: 728
[26] Wen S P, Zong R L, Zeng F, Gao Y, Pan F.Acta Mater, 2007; 55: 345
[27] Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F.Mater Sci Eng, 2010; A527: 1243
[28] Liu Y, Bufford D, Wang H, Sun C, Zhang X.Acta Mater, 2011; 59: 1924
[29] Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang J Y, Zhang X.J Appl Phys, 2012; 111: 073526
[30] Lai W S, Yang M J.Appl Phys Lett, 2007; 90: 181917
[31] Zhang J Y, Liu G, Zhang X, Zhang G J, Sun J, Ma E.Scr Mater, 2010; 62: 333
[32] Wang Y Q, Zhang J Y, Liang X Q, Wu K, Liu G, Sun J.Acta Mater, 2015; 95: 132
[33] Zhang J Y, Liu G, Sun J.Mater China, 2016; 35: 31
[33] (张金钰, 刘刚, 孙军. 中国材料进展, 2016; 35: 31)
[34] Mara N A, Bhattacharyya D, Dickerson P, Hoagland R G, Misra A.Appl Phys Lett, 2008; 92: 231903
[35] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A.Appl Phys Lett, 2010; 97: 021909
[36] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J.Acta Mater, 2012; 60: 1610
[37] Zhang J Y, Liu G, Lei S Y, Niu J J, Sun J.Acta Mater, 2012; 60: 4054
[38] Zhang J Y, Li J, Liang X Q, Liu G, Sun J.Sci Rep, 2014; 4: 4205
[39] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2012; 60: 7183
[40] Zhang J Y, Liu G, Sun J.Sci Rep, 2013; 3: 2324
[41] Kim Y B, Budiman A S, Baldwin J K, Mara N A, Misra A.J Mater Res, 2012; 27: 592
[42] Han S M, Phillips M A, Nix W D.Acta Mater, 2009; 57: 4473
[43] Wang J, Yang C, Hodgson P D.Scr Mater, 2013; 69: 626
[44] Zhang J Y, Cui J C, Liu G, Sun J.Scr Mater, 2013; 68: 639
[45] Zhang J Y, Liang X Q, Zhang P, Wu K, Liu G, Sun J.Acta Mater, 2014; 66: 302
[46] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M.Thin Solid Films, 2011; 519: 3213
[47] Wei Q.J Mater Sci, 2007; 42: 1709
[48] Zhang J Y, Liu G, Sun J.Int J Plast, 2013; 50: 1
[49] Zhang J Y, Liu G, Sun J.Acta Mater, 2013; 61: 6868
[50] Zhang J Y, Wang Y Q, Wu K, Zhang P, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2014; A612: 28
[51] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, Sun J.Acta Mater, 2012; 60: 3677
[52] Zhang J Y, Wang Y Q, Liu G, Sun J.Appl Surf Sci, 2014; 321: 19
[53] Carlton C E, Ferreira P J.Acta Mater, 2007; 55: 3749
[54] Kocks U F, Mecking H.Prog Mater Sci, 2003; 48: 171
[55] Misra A, Zhang X, Hammon D, Hoagland R G.Acta Mater, 2005; 53: 221
[56] Yan J W, Zhu X F, Yang B, Zhang G P.Phys Rev Lett, 2013; 110: 155502
[57] Gruber P A, B?hm J, Onuseit F, Wanner A, Spolenak R, Arzt E.Acta Mater, 2008; 56: 2318
[58] Lei S Y, Zhang J Y, Niu J J, Liu G, Zhang X, Sun J.Scr Mater, 2012; 66: 706
[59] Lu L, Chen X, Huang X, Lu K.Science, 2009; 323: 607
[60] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A.Acta Mater, 2011; 59: 3804
[61] Huang X, Hansen N, Tsuji N.Science, 2006; 312: 249
[62] Knorr I, Cordero N M, Lilleodden E T, Volkert C A.Acta Mater, 2013; 61: 4984
[63] Li N, Mara N A, Wang Y Q, Nastasi M, Misra A.Scr Mater, 2011; 64: 974
[64] Anderson P M, Foecke T, Hazzledine P M.Mater Res Soc Bull, 1999; 24: 27
[65] Misra A, Verdier M, Kung H, Embury J D, Hirth J P.Scr Mater, 1999; 41: 973
[66] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y.Appl Phys Lett, 2008; 92: 161905
[67] Zhang J, Zhang J Y, Liu G, Zhao Y, Sun J.Thin Solid Films, 2009; 517: 2936
[68] Donohue A, Spaepen F, Hoagland R G, Misra A.Appl Phys Lett, 2007; 91: 241905
[69] Chen C Q, Pei Y T, De Hosson J T M.Acta Mater, 2010; 58: 189
[70] Zhang J Y, Liu G, Sun J.Acta Mater, 2014; 66: 22
[71] Kim J Y, Jang D C, Greer J R.Adv Funct Mater, 2011; 21: 4550
[72] Kuzmin O V, Pei Y T, Chen C Q, De Hosson J T M.Acta Mater, 2012; 60: 889
[73] Jang D, Greer J R.Nat Mater, 2010; 9: 215
[74] Kiener D, Minor A M.Acta Mater, 2011; 59: 1328
[75] Beyerlein I J, Caro A, Demkowicz M J, Mara N A, Misra A, Uberuaga B P.Mater Today, 2013; 16: 443
[76] Yu K Y, Liu Y, Fu E G, Wang Y Q, Myers M T, Wang H, Shao L, Zhang X.J Nucl Mater, 2013; 440: 310
[77] Zhang P, Zhang J Y, Li J, Liu G, Wu K, Wang Y Q, Sun J.Acta Mater, 2014; 76: 221
[78] Zhang P, Zhang J Y, Li J, Liu G, Wu K, Wang Y Q, Sun J.J Mater Sci, 2015; 50: 1901
[79] Wang Y Q, Hou Z Q, Zhang J Y, Liang X Q, Liu G, Zhang G J, Sun J.Acta Metall Sin (Engl Lett), 2016; 29: 156
[80] Zhang J Y, Wang Y Q, Liang X Q, Zeng F L, Liu G, Sun J.Acta Mater, 2015; 92: 140
[81] Liang X Q, Zhang J Y, Wang Y Q, Wu S H, Zeng F L, Wu K, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2016; A672: 153
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[6] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[9] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[10] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[11] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[12] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[13] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[14] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[15] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.