Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 105-112    DOI: 10.11900/0412.1961.2015.00263
  本期目录 | 过刊浏览 |
Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*
江智,田艳红(),丁苏
哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
SYNTHESIS OF Sn3.5Ag0.5Cu NANOPARTICLE SOLDERS AND SOLDERING MECHANISM
Zhi JIANG,Yanhong TIAN(),Su DING
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
引用本文:

江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*[J]. 金属学报, 2016, 52(1): 105-112.
Zhi JIANG, Yanhong TIAN, Su DING. SYNTHESIS OF Sn3.5Ag0.5Cu NANOPARTICLE SOLDERS AND SOLDERING MECHANISM[J]. Acta Metall Sin, 2016, 52(1): 105-112.

全文: PDF(7176 KB)   HTML
摘要: 

采用液相法在室温下合成了直径为10 nm以下的Sn3.5Ag0.5Cu纳米颗粒, 并采用SEM, TEM, XRD及EDS表征其形貌、结构、物相及元素组成特征, 研究了不同温度和时间烧结时纳米颗粒的尺寸变化, 测试了经过不同压力钎焊后的Cu/纳米钎料/Cu的三明治结构的剪切强度. 结果表明: 10 nm以下的纳米钎料颗粒呈现颈缩团聚的趋势; 烧结温度越高, 纳米颗粒的颈缩团聚越明显, 整个过程发生越迅速; 在230 ℃可以实现钎焊, 低于传统微米尺度的Sn3.5Ag0.5Cu钎料的温度(250 ℃左右), 且钎焊界面强度受钎焊压力影响较大, 当压力为10 N时, 三明治结构的剪切强度达到最大, 为14.2 MPa. 钎焊键合过程为首先通过纳米颗粒颈缩团聚减少气孔, 随着温度的升高, 熔化的钎料与固态母材之间的溶解扩散过程形成牢固的冶金连接.

关键词 Sn3.5Ag0.5Cu纳米钎料烧结界面结构剪切强度    
Abstract

Solder has been long playing an important role in the assembly and interconnection of integrated circuit (IC) components on substrates, i.e., ceramic or organic printed circuit boards. The main function of solder is to provide electrical, thermal, and mechanical connections in electronic assemblies. Lead, a major component in Sn/Pb solder, has long been recognized as a health threat to human beings, which is the main reason for the requirement of environmental-friendly lead-free solder. A variety of lead-free solder alloys have been investigated as potential replacements for Sn/Pb solders, but there is still no perfect alternative. Three alloy families, Sn-Ag-Cu, Sn-Ag and Sn-Cu, seem to be of particular interest. However, concerns with this alloy family, including higher soldering temperature, poorer wettability due to their higher surface tension, and their compatibility with existing soldering technology and materials, have impeded their steps in completely replacing Sn/Pb solder. As the melting point can be dramatically decreased when the size of the particles is reduced to nanometer size, especially under 20 nm, and nanosolders have much better wettability at the same time. Furthermore, after heated and cooled, nanomaterials become bulk materials, which make them have the ability to endure a higher function temperature. Thus it is of great significance to conduct in-depth investigation on the synthesis of nanosolders and their soldering performance. In this work, Sn3.5Ag0.5Cu nanoparticles as a promising alternative of Sn/Pb solder was developed. The morphology, atomic structure, phase composition, and element composition of nanoparticles were characterized by SEM, TEM, XRD, and EDS, respectively. Size change of Sn3.5Ag0.5Cu nanoparticles under different sintering temperatures and sintering times was discussed. Microstructure of Cu/nanosolder/Cu sandwich structure under different soldering peak temperatures and soldering times was investigated. Shear strength and failure mode of the Cu/nanosolder/Cu sandwich structure under different pressure were also discussed. The results showed that the average diameter of nanoparticles was less than 10 nm with an agglomeration growth tendency. When sintering temperature was relatively low, the neck size increased steadily as temperature and time increased. In contrast, when sintering temperature was relatively high, the agglomeration mainly happened in the initial process and neck size changed little as the time increased. Thickness of intermetallics of Cu/nanosolder/Cu sandwich structure increased with the soldering temperature increased while the size and quantity of voids decreased. Shear strength of bonded sample increased with the increasing pressure, and got the maximum 14.2 MPa when the pressure reached 10 N.

Key wordsSn3.5Ag0.5Cu nanosolder    sintering    interface structure    shear strength
收稿日期: 2015-05-16     
基金资助:国家自然科学基金项目51522503和新世纪优秀人才支持计划项目NCET-13-0175资助
图1  Cu/锡基纳米颗粒/Cu三明治结构键合和剪切强度测试示意图
图2  锡基复合纳米颗粒的SEM和HRTEM像及XRD谱和EDS分析
图3  不同温度下烧结5 min后Sn3.5Ag0.5Cu纳米颗粒的SEM像
图4  不同烧结温度和时间下Sn3.5Ag0.5Cu纳米颗粒的SEM像
图5  不同烧结温度和时间下Sn3.5Ag0.5Cu纳米颗粒的尺寸变化
图6  不同峰值温度和加热时间下Cu/纳米钎料/Cu三明治结构的SEM像
图7  纳米钎料的键合机理示意图
图8  不同加热温度下金属间化合物(IMCs)的厚度变化
图9  不同压力下Cu/纳米钎料/Cu三明治结构的剪切强度及断裂模式分析
[1] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[2] Lee N C. Solder Surf Technol, 1997; 9(2): 65
[3] Yu D Q, Zhao J, Wang L. J Alloys Compd, 2004; 376: 170
[4] Artaki I, Jackson A M, Vianco P T. J Electron Mater, 1994; 23: 757
[5] Huang H, Yang L M, Liu J. Appl Optics, 2012; 51: 2979
[6] Tian Y H, Yang S H, Wang C Q, Wang X L, Lin P R. Acta Metall Sin, 2010; 46: 366
[6] (田艳红, 杨世华, 王春青, 王学林, 林鹏荣. 金属学报, 2010; 46: 366)
[7] Wang F J, Qian Y Y. Acta Metall Sin, 2005; 41: 775
[7] (王凤江, 钱乙余. 金属学报, 2005; 41: 775)
[8] Gain A K, Chan Y C, Yung W K C. Microelectron Reliab, 2011; 51: 975
[9] Gain A K, Fouzder T, Chan Y C, Sharif A, Wong N B, Yung W K C. J Alloys Compd, 2010; 506: 216
[10] Liu P, Yao P, Liu J. J Electron Mater, 2008; 37: 874
[11] Tsao L C, Chang S Y, Lee C I, Sun W H, Huang C H. Mater Des, 2010; 31: 4831
[12] Jiang H, Moon K, Dong H, Hua F, Wong C P. Chem Phys Lett, 2006; 429: 492
[13] Lu D D, Li Y G, Wong C P. J Adhes Sci Technol, 2008; 22: 815
[14] Lee J H, Shin D H, Kim Y S. Met Mater Int, 2003; 9: 577
[15] Yung K C, Law C M T, Lee C P, Cheung B, Yue T M. J Electron Mater, 2012; 41: 313
[16] Hsiao L Y, Duh J G. J Electron Mater, 2006; 35: 1755
[17] Jiang H J, Moon K, Hua F, Wong C P. Chem Mater, 2007; 19: 4482
[18] Chee S S, Lee J H. Electron Mater Lett, 2012; 8: 587
[19] Pang S, Yung K. Mater Trans, 2012; 53: 1770
[20] Fang Z Z, Wang H. Int Mater Rev, 2008; 53: 326
[21] Yu J, Kim J Y. Acta Mater, 2008; 56: 5514
[22] Kim J Y, Yu J, Kim S H. Acta Mater, 2009; 57: 5001
[23] Liu C Y, Chen J T, Chuang Y C, Ke L, Wang S H. Appl Phys Lett, 2007; 90: 2114
[24] Tsao L C. J Alloys Compd, 2011; 509: 2326
[25] Niu L N. Master Thesis, Harbin Institute of Technology, 2011
[25] (牛丽娜. 哈尔滨工业大学硕士学位论文, 2011)
[26] Prakash K H, Sritharan T. Acta Mater, 2001; 49: 2481
[1] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[2] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[3] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[5] 皮慧龙, 石小磊, 徐兴祥. SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响[J]. 金属学报, 2021, 57(6): 791-796.
[6] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[7] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[8] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[9] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[10] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[11] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[12] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[13] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[14] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[15] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.