Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1092-1100    DOI: 10.11900/0412.1961.2015.00083
  本期目录 | 过刊浏览 |
马氏体的分布对双相钢微观变形行为和力学性能的影响
邓洁,马佳伟,许以阳,沈耀()
EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS
Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN()
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
Jie DENG, Jiawei MA, Yiyang XU, Yao SHEN. EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS[J]. Acta Metall Sin, 2015, 51(9): 1092-1100.

全文: PDF(14130 KB)   HTML
摘要: 

通过工艺设计, 对工业20钢进行了分级淬火(SQ)和临界区退火(IA)热处理, 获得了马氏体体积分数相近、但马氏体分别呈离散分布和连续分布的2种双相钢. 对它们的拉伸/冲击力学性能进行了表征; 应用数字图像相关(DIC)方法获得双相钢的微观应变分布, 并结合表面微裂纹分析, 揭示了2种双相钢的不同变形断裂机制. SQ双相钢展现出较低的强度, 但具有更好的塑性与冲击韧性, 这源于铁素体较大变形松弛了马氏体在变形中产生的应力集中; 而IA双相钢中铁素体变形受到周围马氏体的阻碍, 铁素体相对小的变形不能有效松弛变形马氏体的应力, 使裂纹优先在马氏体中产生, 因而IA双相钢具有高强度和低塑性.

关键词 双相钢微观结构塑性变形分级淬火临界区退火数字图像相关(DIC)    
Abstract

Investigation of the relationship between microstructure and microscopic deformation behavior of dual phase steel is very important for high property dual phase steel development. In this work, step quenching (SQ) and intercritical annealing (IA) heat treatments were optimized to produce dual phase steels of similar martensite volume fraction, but with respectively isolated and continuous martensite distribution. The tensile and dynamic fracture properties of dual phase steels were investigated. Strain distribution of steels was measured by digital image correlation (DIC) method. Combined with observations of microcracks/microvoids, different deformation and fracture mechanisms were revealed. Compared to IA steel, SQ steel has lower strength, but longer elongation and higher fracture toughness, and the latter were attributed to larger deformation in ferrites that results in more stress relaxation of martensite during deformation. While in IA steel, the deformation in ferrites is blocked by adjacent martensites, so that a relatively small strain of ferrite cannot effectively relax the stress in martensites, which resulted in higher plastic deformation in martensite than in SQ steel; therefore, cracks preferentially initiate in martensite, and IA steel exhibits higher strength and lower plasticity.

Key wordsdual phase steel    microstructure    plastic deformation    step quenching    intercritical annealing    digital image correlation (DIC)
    
基金资助:*国家重点基础研究发展计划项目2012CB619600和国家自然科学基金项目51471107资助
图1  拉伸试样尺寸示意图
图2  SQ和IA双相钢热处理工艺示意图
图3  SQ和IA处理所得双相钢的OM像
图4  IA和SQ样品的拉伸曲线
Sample σ 0.2 / MPa σ b / MPa h ? / MPa δ / %
IA 558 1006 6656 7.2
SQ 420 840 4046 10.8
表1  2种材料的拉伸力学性能
图5  SQ和IA样品的拉伸断口SEM像
图6  SQ和IA样品的冲击断口SEM像
图7  SQ样品目标区域变形前的SEM像及叠加SEM像的断后等效应变分布图
图8  IA样品目标区域变形前SEM像及叠加SEM像的断后等效应变分布图
图9  SQ和IA样品中等效应变分布频率统计图
图10  SQ和IA样品断口附近的表面裂纹
[1] Rashid M. Annu Rev Mater Sci, 1981; 11(1): 245
[2] Ma M T,Wu B R. Dual Phase Steel-Physics & Mechanical Metallurgy. 2nd Ed., Beijing: Metallurgical Industry Press, 2009: 1 (马鸣图,吴宝榕. 双相钢-物理和力学冶金. 第二版 , 北京: 冶金工业出版社, 2009: 1)
[3] Tian Z Q, Tang D, Jiang H T, Ma X L, Xu H X. Mater Mech Eng, 2009; 33(4): 1 (田志强, 唐 荻, 江海涛, 马小亮, 许洪汛. 机械工程材料, 2009; 33(4): 1)
[4] Gao L,Zhou Y M,Liu J L,Shen X D,Ren Z M. In: The Chinese Society for Metals ed., Proceeding 7th China Steel Conference, Beijing: Metallurgical Industry Press, 2009: 96 (高 丽,周月明,刘俊亮,沈小丹,任忠鸣. 见: 中国金属学会主编, 第七届中国钢铁年会论文集, 北京: 冶金工业出版社, 2009: 96)
[5] Tasan C, Hoefnagels J, Geers M. Scr Mater, 2010; 62: 835
[6] Byun T S, Kim I S. J Mater Sci, 1993; 28: 2923
[7] Gerbase J, Embury J D, Hobbs R M. In: Kot R A, Morris J W eds., Structure and Properties of Dual-Phase Steels, New York: TMS-AIME, 1979: 118
[8] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Acta Mater, 2011; 59: 658
[9] Pierman A P, Bouaziz O, Pardoen T, Jacques P J, Brassart L. Acta Mater, 2014; 73: 298
[10] Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Mater Sci Eng, 2014; A604: 135
[11] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957
[12] Ahmad E, Manzoor T, Ziai M, Hussain N. J Mater Eng Perform, 2012; 21: 382
[13] Su Y, Gurland J. Mater Sci Eng, 1987; 95: 151
[14] Han Q, Kang Y, Hodgson P D, Stanford N. Scr Mater, 2013; 69: 13
[15] Kim N, Thomas G. Metall Trans, 1981; 12A: 483
[16] Xu Y Y, Deng J, Ge H Q, Shen Y. Mater Mech Eng, 2015; 39(6): 40 (许以阳, 邓 洁, 葛涵清, 沈 耀. 机械工程材料, 2015; 39(6): 40)
[17] Sutton M A, Orteu J J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer-Verlag US, 2009: 119
[18] Pan B, Qian K, Xie H, Asundi A. Meas Sci Technol, 2009; 20(6): 1
[19] Kang J, Ososkov Y, Embury J D, Wilkinson D S. Scr Mater, 2007; 56: 999
[20] Kang J, Jain M, Wilkinson D S, Embury J D. J Strain Anal Eng Des, 2005; 40: 559
[21] Joo S H, Lee J K, Koo J M, Lee S, Suh D W, Kim H S. Scr Mater, 2013; 68: 245
[22] Heat Treatment Manual Editorial Committee in Heat Treatment Institute of Chinese Mechanical Engineering Society. Heat Treatment Manual (Vol.1). 3rd Ed., Beijing: China Machine Press, 2001: 131 (中国机械工程学会热处理专业学会《热处理手册》编委会.热处理手册(第一卷)工业基础. 第三版, 北京: 机械工业出版社, 2001: 131
[23] Bag A, Ray K K, Dwarakadasa E S. Metall Mater Trans, 1999; 30A: 1193
[24] Ghadbeigi H, Pinna C, Celotto S, Yates J. Mater Sci Eng, 2010; A527: 5026
[25] Shen H, Lei T, Liu J. Mater Sci Technol, 1986; 2(1): 28
[26] Woo W, Em V, Kim E Y, Han S, Han Y, Choi S H. Acta Mater, 2012; 60: 6972
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[7] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[8] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[9] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[10] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[11] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[12] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[13] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[14] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[15] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.