Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1025-1037    DOI: 10.11900/0412.1961.2015.00127
  论文 本期目录 | 过刊浏览 |
SiCf/TC17复合材料拉伸行为研究
张旭,王玉敏(),杨青,雷家峰,杨锐
 
STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES
Xu ZHANG,Yumin WANG(),Qing YANG,Jiafeng LEI,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. Acta Metall Sin, 2015, 51(9): 1025-1037.

全文: PDF(16436 KB)   HTML
  
摘要: 

研究了SiCf/TC17复合材料的室温、高温(773 K)拉伸性能及其断裂机制. 结果表明: SiCf/TC17复合材料室温、高温应力-应变曲线受纤维线弹性变形和基体屈服程度影响呈现不同的形状; 室温断裂机制主要是反应层多次断裂、纤维一次断裂和基体脆性断裂等, 高温断裂机制主要是纤维多次断裂、基体韧性断裂和大范围的界面脱黏等; 纤维累计损伤理论适合于对SiCf/TC17复合材料断裂强度的估测, 其中室温断裂强度符合临界断裂纤维数大于或等于3时的局部承担载荷模型, 高温断裂强度符合均匀承担载荷模型. 结合断裂机制和强度估算结果, 详细论述了SiCf/TC17复合材料室温、高温拉伸断裂过程.

关键词 钛基复合材料SiC纤维拉伸性能断裂机制断裂过程    
Abstract

Tensile properties and fracture mechanisms of SiCf/TC17 composites at room temperature and 773 K were studied. The results show that fiber elastic deformation and matrix yielding contributed to the shapes of the stress-strain curves of SiCf/TC17 composites, which were the bilinear appearance at 298 K and the slight curvature at 773 K. Major fracture mechanism of SiCf/TC17 composites at room temperature were as follows: multiple fractures of the interfacial reaction layer, single fiber fracture, matrix brittle fracture etc.. Typical fracture mechanism of SiCf/TC17 composites at elevated temperature were as follows: multiple fiber fracture, matrix plastic fracture, interface debonding etc.. Fiber cumulating damage theory was proved to be suitable for estimation of the fracture strength of this composite. The calculations of local loading sharing model while taking three or more fibers failure into account and global loading sharing model were close to the experimental values of room temperature and elevated temperature respectively. In addition, according to fracture mechanisms and strength prediction, tensile fracture process of SiCf/TC17 composites at room and elevated temperature were explained in detail. At room temperature, multiple fractures of the interfacial reaction layer started at first, and then the weak fiber fractured gradually and randomly. After critical fiber cluster has been formed by nearby broken fibers, the crack extended into the matrix from these fibers. With the increase of load, the fibers and the matrix at the tip of crack gradually destroyed. At the same time, the cracks from other critical fiber clusters were also expanding and connecting to each other. When the crack area has reached the critical level, the remaining fiber and matrix quickly fractured. However, at elevated temperature the matrix yielded firstly, and then multiple fracture randomly of the interfacial reaction layer and the weak fiber occurred sequentially. The crack from broken fiber deflected at interface between fiber and matrix, caused interface debonding. With the increasing of broken fiber number, the micro-cavities of matrix emerged gradually in the stress concentration area. When the total crack area accumulated by the broken fibers and micro-cavities of matrix has reached the critical level, the remaining fiber and matrix quickly fractured.

Key wordstitanium matrix composite    SiC fiber    tensile property    fracture mechanism    fracture process
    
ZTFLH:     
图1  SiCf /TC17复合材料拉伸试样示意图
图2  热等静压后SiCf/TC17复合材料的微观形貌
Material Testing temperature Yield strength Fracture strength Failure strain Elastic modulus
K MPa MPa % GPa
SiCf/TC17 298 1150 1717 0.91 196
SiCf/TC17 773 - 1341 0.79 184
TC17 298 959 1059 >2.00 113
TC17 773 613 726 >2.00 77
表1  SiCf/TC17复合材料及基体的拉伸性能
图3  SiCf/TC17复合材料及TC17合金的拉伸应力-应变曲线
图4  SiCf/TC17复合材料298 K拉伸断口形貌
图5  SiCf/TC17复合材料773 K拉伸断口形貌
图6  SiCf/TC17复合材料室温拉伸断口中平坦区域的纵剖面典型形貌
图7  SiCf/TC17复合材料室温拉伸断口中起伏较大区域的纵剖面典型形貌
图8  SiCf/TC17复合材料773 K拉伸断口的纵剖面典型形貌
图9  SiCf/TC17复合材料高温拉伸时的纤维断裂
Testing temperature K scomp / MPa
Experiment GLS LLS, i=1 LLS, i=2 LLS, i=3 LLS, i=4
298 1717 2048 1361 1608 1701 1746
773 1341 1381 599 1071 1136 1167
表2  SiCf/TC17 复合材料断裂强度的实验值及模型估测结果
[1] Christoph L, Frank K, Joachim H, Wolfgang A K. Aerosp Sci Technol, 2003; 7: 201
[2] Nicolas C, Frédéric F, Serge K. Aerosp Sci Technol, 2003; 7: 307
[3] Naseem K, Yang Y Q, Luo X, Huang B, Feng G H. Mater Sci Eng, 2011; A528: 4507
[4] Thomas M P, Winstone M R. Compos Sci Technol, 1999; 59: 297
[5] Gundel D B, Wawner F E. Compos Sci Technol, 1997; 57: 471
[6] Fukushima A, Fujiwara C, Kagawa Y, Masuda C. Mater Sci Eng, 2000; A276: 243
[7] Weber C H, Chen X, Connell S J, Zok F W. Acta Metall Mater, 1994; 42: 3443
[8] Gálvez F, González C, Poza P, Llorca J. Scr Mater, 2001; 44: 2667
[9] Kagawa Y, Fujita T, Okura A. Acta Metall Mater, 1994; 42: 3019
[10] Peters P W M, Hemptenmacher J. Composites, 2002; 33A: 1373
[11] Truon A, Ccota J, Mainí P, Trias D, Mayugo J A. Compos Sci Technol, 2005; 65: 2039
[12] Baik K H, Grant P S. Scr Mater, 2001; 4: 607
[13] Yang Y Q, Zhu Y, Ma Z J, Chen Y. Scr Mater, 2004; 5: 385
[14] González C, Llorca J. Acta Mater, 2001; 49: 3505
[15] Zhang X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (张 旭. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[16] Garc??a-Leiva M C, Oca?a I, Mart??n-Meizoso A, Mart??nez-Esnaola J M, Marqués V, Heredero F. Eng Fract Mech, 2003; 70: 2137
[17] Cheng T T, Jones I P, Shatwell R A, Doorbar P. Mater Sci Eng, 1999; A260: 139
[18] Hill R A. J Mech Phys Solids, 1965; 13: 213
[19] Curtin W A. J Am Ceram Soc, 1991; 74: 283
[20] Curtin W A. Composites, 1993; 24: 98
[21] Li J K, Yang Y Q, Yuan M N, Luo X, Li L L. Trans Nonferrous Met Soc China, 2008; 18: 523
[22] Chandra N, Ghonem H. Composites, 2001; 32A: 575
[23] Chandra N, Ananth C R. Compos Sci Technol, 1995; 54: 87
[24] Kalton A F, Howard S J, Janczak-rusch J, Clyne T W. Acta Mater, 1998; 46: 3175
[25] Jeng S M, Yang J M, Yang C J. Mater Sci Eng, 1991; A138: 169
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[4] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] 武玉鹏, 张博, 李经明, 张双楠, 吴颖, 王玉敏, 蔡桂喜. 航空发动机整体叶环中纤维断丝超声检测方法[J]. 金属学报, 2020, 56(8): 1175-1184.
[6] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[7] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[8] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[9] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[10] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[11] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[14] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[15] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.