Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1333-1340    DOI: 10.11900/0412.1961.2015.00121
  本期目录 | 过刊浏览 |
铁素体球墨铸铁低温冲击断裂裂纹形核及扩展机理*
张新宁,曲迎东(),李荣德,尤俊华
MECHANISM OF CRACK NUCLEATION AND PROPA- GATION OF FERRITE DUCTILE IRON DURING IMPACT FRACTURE UNDER LOW TEMPERATURES
Xinning ZHANG,Yingdong QU,Rongde LI,Junhua YOU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
引用本文:

张新宁,曲迎东,李荣德,尤俊华. 铁素体球墨铸铁低温冲击断裂裂纹形核及扩展机理*[J]. 金属学报, 2015, 51(11): 1333-1340.
Xinning ZHANG, Yingdong QU, Rongde LI, Junhua YOU. MECHANISM OF CRACK NUCLEATION AND PROPA- GATION OF FERRITE DUCTILE IRON DURING IMPACT FRACTURE UNDER LOW TEMPERATURES[J]. Acta Metall Sin, 2015, 51(11): 1333-1340.

全文: PDF(1272 KB)   HTML
摘要: 

在低温下对QT400-18L铁素体球墨铸铁件进行Charpy缺口示波冲击实验, 测试温度对冲击过程中裂纹形核和裂纹扩展能力的影响, 采用OM观察分析不同温度下铁素体球墨铸铁裂纹萌生与扩展路径以及断口附近组织的演变规律. 结果表明, 韧脆转变温度以上, 冲击后断口附近大量石墨-基体界面发生开裂, 石墨界面开裂后产生的孔洞起到钝化裂纹和降低裂纹扩展速率的作用; 韧脆转变温度区间, 冲击试样表现为韧窝和解理混合断口形貌, 断裂模式和裂纹形核均与石墨球有关; 韧脆转变温度以下, 垂直交叉孪晶成核进而导致微裂纹扩展, 解理断裂主要是孪晶起裂, 这种形变孪晶引起的裂纹形核和扩展方式造成了裂纹形成功与裂纹扩展功的剧烈下降.

关键词 石墨球韧脆转变解理断裂形变孪晶    
Abstract

Due to its excellent ductility and moderate strength, QT400-18L ferrite ductile iron has been widely used in producing core components of wind power equipment such as the hub of a wind turbine. Most of the researches have focused on the exploration of mechanical properties at low temperature, but none of them give the explanation on microcosmic mechanism of ductile iron during low temperature impact and the mechanism of crack nucleation and propagation of ferrite ductile iron during impact fracture has not been analyzed. In this work, the impact toughness of QT400-18L ferrite ductile iron was measured by V-notch Charpy impact test at different temperatures, the influence of low temperature impact toughness and the fracture behavior of ferrite ductile iron were discussed. The results show that the cleavage fracture resistance of QT400-18L ferrite ductile iron is reduced with the decrease of impact temperatures. Above ductile-brittle transition temperature (DBTT), most of the total fracture energies are expended during the crack propagation process. Below DBTT, both crack initiation energy and crack propagation energy decrease obviously. By using in situ fracture metallographic observation method, crack initiation and propagation of QT400-18L ferrite ductile iron under different temperatures were analyzed. Above DBTT, graphite nodules play the role of crack blunting and reducing crack propagation rate; in DBTT range, the fracture morphology shows mixed fracture with cleavage and dimples, which are related to graphite nodules; below DBTT, deformation twins lead to the nucleation of microcrack and result in cleavage fracture, the deformation twinning could possibly play a significant role in the ductile to brittle transition of QT400-18L ferrite ductile iron.

Key wordsgraphite nodule    ductile-brittle transition    cleavage fracture    deformation twin
    
基金资助:* 国家自然科学基金项目51274142, 辽宁省自然科学基金项目2014028015和沈阳市科技局项目F15-199-1-15资助
图1  铁素体球墨铸铁的冲击载荷和吸收能量在冲击过程中随位移的变化曲线
图2  铁素体球墨铸铁在不同温度冲击后的断裂路径
图3  铁素体球墨铸铁在-20 ℃冲击后V型缺口下方断口的SEM像
图4  铁素体球墨铸铁在-20 ℃冲击前后断口附近的形貌
图5  铁素体球墨铸铁在-20 ℃冲击后断口附近基体变形的形貌
图6  铁素体球墨铸铁在-20 ℃冲击后石墨球周围显微空洞的形貌
图7  铁素体球墨铸铁在-20 ℃冲击后断裂处纵截面的SEM像
图8  铁素体球墨铸铁在-45 ℃冲击后V型缺口下方断口的SEM像
图9  铁素体球墨铸铁在-45 ℃冲击后靠近断面处的SEM像
图10  铁素体球墨铸铁在-45 ℃冲击前后断口附近石墨形态的形貌
图11  铁素体球墨铸铁在-45 ℃冲击后断口处石墨球周围基体变形的形貌
图12  铁素体球墨铸铁在-80 ℃冲击后断口的SEM像
图13  铁素体球墨铸铁在-80 ℃冲击时的解理断裂示意图
图14  铁素体球墨铸铁在-80 ℃冲击后断口附近组织的形貌
图15  铁素体球墨铸铁在-80 ℃冲击后石墨球周围舌状花样的SEM像
图16  舌状花样模型示意图
图17  铁素体球墨铸铁在-80 ℃ 冲击后形变孪晶的SEM像
[1] Qi Z C, Bo K W. China Foundry, 2008; 5(2): 82
[2] Labrecque C, Gagne M. Can Met Quart, 1998; 37: 343
[3] Hau?ild P, Nedbal I, Berdin C. Mater Sci Eng, 2002; A335: 164
[4] Sertucha J, Lacaze J, Serrallach J. Mater?Sci?Technol, 2012; 28: 184
[5] Wei B Q, Liang J, Gao Z D, Wu D H. J Tsinghua Uni (Sci Technol), 1996; 26: 56 (魏秉庆, 梁 吉, 高志栋, 吴德海. 清华大学报(自然科学版), 1996; 26: 56)
[6] Dai P Q, He Z R, Mao Z Y. J Iron Steel Res, 2001; 13(6): 47 (戴品强, 何则荣, 毛志远. 钢铁研究学报, 2001; 13(6): 47)
[7] Dai P Q. PhD Dissertation, Zhejiang University, Hangzhou, 2002 (戴品强. 浙江大学博士学位论文, 杭州, 2002)
[8] Dai P Q, He Z R, Zheng C M, Mao Z Y. Mater Sci Eng, 2001; A42: 531
[9] Ibrahim O H, Elshazly E S. J Mater Eng Perform, 2013; 22: 584
[10] Tanguy B, Besson J, Piques R. Eng Fract Mech, 2005; 72: 413
[11] Toshiro K, Isamu Y, Mitsuo N. Eng Fract Mech, 1986; 24: 773
[12] Marushchak P O, Bishchak R T, Gliha B. J Mater Sci, 2011; 46: 568
[13] Tang Z T. Phys Exam Testing, 2004; (4): 5 (唐振廷. 物理测试, 2004; (4): 5)
[14] Masaki T, Tatsuro O, Toshihiro T, Kenji H. ISIJ Int, 2012; 52: 915
[15] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[16] Pineau A. Int J Fract, 2006; 138: 139
[17] Ratto P J, Ansaldi A F, Fierro V E, Alvarez H N, Sikora J A. ISIJ Int, 2001; 41: 372
[18] Zenjiro Y, Yoichi K, Ken'ichi S, Hideharu M, Toshiki Y. Mater Trans, 2006; 47: 82
[19] Brooks C R,translated by Xie F J,Sun J X. Failure Analysis of Engineering Material. Beijing: Machine Industry Press, 2003: 256 (Brooks C R著,谢斐娟,孙家骧译. 工程材料的失效分析. 北京: 机械工业出版社, 2003: 256)
[20] Junaidi S, Toshihiro T, Setsuo T. ISIJ Int, 2003; 43: 1100
[21] Ni C H, Wang F C, Xu Q. J Beijing Inst Technol, 2011; 8: 984 (倪川皓, 王富耻, 徐 强. 北京理工大学学报, 2011; 8: 984)
[22] Smida T, Bosansky J. Mater Sci Eng, 2000; A287: 107
[23] Myagchilov S, Dawson P R. Mater Sci Eng, 1999; A7: 975
[24] Li J, Zhong Q P. Ordnance Mater Sci Mech, 1984; 2(8): 64 (李 洁, 钟群鹏. 兵器材料与力学, 1984; 2(8): 64)
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[3] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[4] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[5] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[6] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[7] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[8] 陈剑虹, 曹睿. 焊缝金属解理断裂微观机理[J]. 金属学报, 2017, 53(11): 1427-1444.
[9] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
[10] 郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.
[11] 张志波 刘振宇 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073.
[12] 吴志强,唐正友,李华英,张海东. 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48(5): 593-600.
[13] 文玉华 张万虎 司海涛 熊仁龙 彭华备. 高Si奥氏体高Mn钢加工硬化行为及机制的研究[J]. 金属学报, 2012, 48(10): 1153-1159.
[14] 秦小梅 陈礼清 邸洪双 邓伟. 变形温度对Fe-23Mn-2Al-0.2C TWIP钢变形机制的影响[J]. 金属学报, 2011, 47(9): 1117-1122.
[15] 李激光 丁亚杰 彭兴东 刘津伟. 水淬工艺对TWIP钢显微组织和力学性能的影响[J]. 金属学报, 2010, 46(2): 221-226.