Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 515-523    DOI: 10.3724/SP.J.1037.2013.00623
  本期目录 | 过刊浏览 |
超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*
骆宗安, 刘纪源, 冯莹莹, 彭文
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳110819
EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL
LUO Zongan, LIU Jiyuan, FENG Yingying, PENG Wen
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
Zongan LUO, Jiyuan LIU, Yingying FENG, Wen PENG. EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL[J]. Acta Metall Sin, 2014, 50(5): 515-523.

全文: PDF(16853 KB)   HTML
摘要: 

采用EBSD和TEM对不同超快速连续退火条件下的低Si系Nb-Ti微合金化TRIP钢进行了显微组织观察, 并探讨了拉伸性能. 结果表明, 100 ℃/s的加热速率和短时保温制度, 使铁素体晶粒细化, 并保留了热轧过程中的弥散细小的微合金元素碳氮化物析出, 因此提高了钢的强度和塑性. 缓冷制度对消除钢的屈服平台有显著作用, 而强度有所下降; 钢的强度随着退火温度的升高而升高. 退火温度在830 ℃时, 残余奥氏体形貌多呈膜状结构与贝氏体铁素体板条相伴出现, 使钢的强度和塑性达到了最佳的配合: 抗拉强度748 MPa, 屈服强度408 MPa, 均匀延伸率21.3%, 加工硬化指数0.27, 强塑积15932.4 MPa·%.

关键词 超快速连续退火缓冷制度晶粒细化残余奥氏体Nb-Ti微合金化    
Abstract

Si-containing transformation induced plasticity (TRIP) steel is noted for good balance of excellent formability and high strength as the advanced high strength steel (AHSS). The advantage of this steel can be attributed to the TRIP effect, which is the transformation of the retained austenite. Furthermore, the local increase in specific volume caused by the TRIP effect can help to close propagating cracks. It is favorable for the automotive structural components based on the high work hardening rate and energy absorption behavior. Low Si-containing can optimize the galvanized performance of the cold rolling TRIP steel, and the ferrite stabilization can be compensated by adding Al. Microalloying with Nb and Ti may provide effective means for further strengthening via grain refinement and precipitation strengthening. The ultra-fast continuous annealing comprised of rapid heating and short austempering is a new-style process for grain refinement and precipitation solidifying. However, the influences of the process on the cold rolling low Si TRIP steel, especially the austenite transformation characteristics and their effects on microstructure and mechanical properties, were rarely reported. Therefore, in this work the microstructures of low Si grade Nb-Ti microalloying TRIP steel under different ultra-fast continuous annealing conditions were observed via EBSD and TEM, and the tensile properties were discussed. The results show that the polygonal ferrite is refined by heating rate of 100 ℃/s and short asutempering procedure. The dispersive and fine microalloyed carbonitrides formed during the hot-rolling stage are reserved. Therefore, the strength and ductility are enhanced simultaneously. The slow cooling procedure can effectively contribute to eliminate the yield point, while the strength is slightly decreased. As the annealing temperature increasing, the strength is enhanced. When the annealing temperature is 830 ℃, the morphology of retained austenite consists of alternated film and bainite-ferrite plates, resulting in optimal combination of strength and ductility: tensile strength 748 MPa, yield strength 408 MPa, uniform elongation 21.3%, work hardening exponent 0.27, balance of strength and ductility is 15932.4 MPa·%.

Key wordsultra-fast continuous annealing    slow cooling procedure    grain refinement    retained austenite    Nb-Ti microalloying
    
ZTFLH:  TG161  
基金资助:*国家高技术研究发展计划项目2013AA031302和中央高校基本科研业务费专项资金项目090307004资助
图1  
Process RP0.2
MPa
Rm
MPa
duniform
%
n Rp0.2/Rm Rm×δuniform
MPa·%
Volume fraction of retained austenite / %
I 436 743 19.7 0.26 0.58 14637.1 4.46
II 358 682 19.6 0.25 0.52 13367.2 4.12
III 408 748 21.3 0.27 0.54 15932.4 4.02
表1  不同连续退火工艺下钢的力学性能及残余奥氏体含量
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
图11  钢经过热轧和冷轧后的显微组织
  
[1] Jimenez-Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Zwaag S. Acta Mater, 2009; 57: 533
[2] Etienne G, Anne M, Pascal J, Yvan H, Bert V, Jan V H. Scr Mater, 2001; 44: 885
[3] Tirumalasetty G K, Van Huis M A, Fang C M, Xu Q, Tichelaar F D, Hanlon D N, Sietsma J, Zandbergen H W. Acta Mater, 2011; 59: 7406
[4] Wang C J, Sun X J, Yong Q L, Li Z D, Zhang X, Jiang L. Acta Metall Sin, 2013; 49: 399
[4] (王长军, 孙新军, 雍岐龙, 李昭东, 张 熹, 江 陆. 金属学报, 2013; 49: 399)
[5] Shanmugam S, Ramisetti N K, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2008; A478: 26
[6] Xu Y B, Hou X Y, Wang Y Q, Wu D. Acta Metall Sin, 2012; 48: 176
[6] (徐云波, 侯晓英, 王业勤, 吴 迪. 金属学报, 2012; 48: 176)
[7] Jacoues P J, Girault E, Harlef P, Delannay F. ISIJ Int, 2001; 41: 1061
[8] Luo H W, Zhao L, Kruijver S O, Sietsma J, Zwaag S V D. ISIJ Int, 2003; 43: 1219
[9] Eui P K, Shun F, Kozo S, Shigeru S. Mater Sci Eng, 2011; A528: 5007
[10] Chiang J, Lawrence B, Boyd J D K, Pilkey A K. Mater Sci Eng, 2011; A528: 4516
[11] Liu J Y, Zhang Z C, Zhu F X, Li Y M, Manabe K I. J Iron Steel Res Int, 2012; 19: 41
[12] Zhang W N, Liu Z Y, Wang G D. Acta Metall Sin, 2010; 46: 1230
[12] (张维娜, 刘振宇, 王国栋. 金属学报, 2010; 46: 1230)
[13] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[14] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[15] Lan H F, Du L X, Wang X N, Liu X H. Steel Res Int, 2012; 83: 139
[16] Wang X P, Du L X, Zhou M. J Northeastern Univ (Nat Sci), 2012; 33: 1137
[16] (王晓鹏, 杜林秀, 周 民. 东北大学学报(自然科学版), 2012; 33: 1137)
[17] Asoo K, Tomota Y, Harjo S, Okitsu Y. ISIJ Int, 2011; 51: 145
[18] Han D, Sun X J, Hui W J, Zhang S L, Shi J, Wang M Q. ISIJ Int, 2008; 48: 1126
[19] Sugimoto K, Murata M, Muramatsu T, Mukai Y. ISIJ Int, 2007; 47: 1357
[20] Lee C G, Kim S J, Oh C S, Lee S. ISIJ Int, 2002; 42: 1162
[21] Zwaag S, Wang J. Scr Mater, 2002; 47: 169
[22] Cui Z Q,Qin Y C. Metallography and Heat Treatment. Beijing: China Machine Press, 2007: 262
[22] (崔忠圻,覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 262)
[23] Tirumalasetty G K, Van Huis M A, Kwakernaak C, Sietsma J, Sloof W G, Zandbergen H W. Acta Mater, 2012; 60: 1311
[24] Jimenez-Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Zwaag S. Acta Mater, 2007; 55: 6713
[25] Zaefferer S, Ohlert J, Bleck W. Acta Mater, 2004; 52: 2765
[1] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[3] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[4] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[5] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[6] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[7] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[8] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[9] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[10] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[11] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[12] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[13] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[14] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[15] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.