Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 379-386    DOI: 10.3724/SP.J.1037.2013.00493
  本期目录 | 过刊浏览 |
亚共析U-Nb合金激光焊接接头的微观结构及力学性能*
李玉斌(), 王巍, 何建军, 张志强, 张彤燕
中国工程物理研究院, 绵阳 621900
MICROSTRUCTURE AND MECHANICAL PROPERTY OF LASER WELDED JOINT FOR HYPOEUTECTOID U-Nb ALLOY
LI Yubin(), WANG Wei, HE Jianjun, ZHANG Zhiqiang, ZHANG Tongyan
China Academy of Engineering physics, Mianyang 621900
引用本文:

李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
Yubin LI, Wei WANG, Jianjun HE, Zhiqiang ZHANG, Tongyan ZHANG. MICROSTRUCTURE AND MECHANICAL PROPERTY OF LASER WELDED JOINT FOR HYPOEUTECTOID U-Nb ALLOY[J]. Acta Metall Sin, 2014, 50(3): 379-386.

全文: PDF(12526 KB)   HTML
摘要: 

采用OM, XRD, TEM等分析手段, 并结合静、动态力学测试方法, 研究了亚共析U-Nb合金激光焊接接头的微观结构和力学性能. 结果表明, 等温热处理下的亚共析U-Nb合金焊接基材为α-U+γ-U珠光体结构, 激光焊缝在预热条件下为单相正交结构α'板条马氏体, 非预热条件下为单相正交结构α'孪晶马氏体. 两类焊接接头的抗拉强度皆约为400 MPa, 远小于基材和焊缝组织强度, 焊接接头未熔透和焊缝微观结构的断裂韧度较低是主要原因. 比较基材和焊接接头的动态冲击压缩性能, 相同冲击速率下, 焊接接头应变率低于基材, 而屈服强度高于基材. 应变速率在2000~4000 s-1间, 接头的流变应力均随应变速率的增加而增加, 表现出明显的应变率强化效应, 在2000 s-1 应变速率下, 接头发生了选择性塑性变形, 绝热剪切带仅形成于基材和热影响区.

关键词 亚共析U-Nb合金激光焊接微观结构力学性能动态压缩    
Abstract

The microstructures and mechanical properties of hypoeutectoid U-Nb alloy laser welded joint were investigated by optical microscopy (OM), X-ray diffractometer (XRD), transmission electron microscopy (TEM), split hopkinson pressure bar (SHPB) and other analysis apparatus. The results show that the microstructure of hypoeutectoid U-Nb alloy base metal is α-U+γ-U lamellar pearlite under isothermal heat treatment, while the laser welding seam is composed of α' lath martensite for pre-heated or α' twin martensite for no pre-heated with orthogonal crystal structure. The quasi-static tensile strength of welded joint (about 400 MPa) is much less than base metal and microstructures of weld, for the main reason of incomplete penetration weld and low fracture toughness. Between dynamic impact loading for base and welded joint, the strain rate of welded joint is lower than base metal, and the yield strength of welded joint is higher. Also, the compressive stress-strain curves indicated that the flow stresses for welded joint increased with the increase of strain rate and the obvious effect of strain rate hardening has been observed. At strain rate of 2000 s-1, selected plastic deformation taking place in welded joint is due to the tremendous difference mechanic properties between weld seam and base metal, and the adiabatic shear band(ASB) only appears in the rest of welded joint.

Key wordshypoeutectoid U-Nb alloy    laser welding    microstructure    mechanical property    dynamic compression
收稿日期: 2013-08-15     
ZTFLH:  TG146.2  
基金资助:*中国工程物理研究院发展基金资助项目2011B0301055
图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
[1] Wilkinson W D. Uranium Metal. Volume II, New York: Interscience Publisher, 1962: 13
[2] Koike J, Kassner M E, Tate R E. J Phase Equil, 1998; 19: 253
[3] Burke J J, Colling D A, Gorum A E. Physical Metallurgy of Uranium Alloys. New York: Brook Hill Publishing Company, 1976: 22
[4] Wood D H, Dini J W. J Nucl Mater, 1983; 114: 199
[5] Chancellor W, Wolfenden A. J Nucl Mater, 1990; 171: 389
[6] Turner P W, Lundin C D. Weld J, 1970; 49: 579
[7] Tatarivo V R, krasnorutskii V S, Rubashko V G. At Energy J, 1977; 43: 122
[8] Sunwoo A. Scr Mater, 1997; 37: 691
[9] Wood D H, Mara G L. Weld J, 1977; 56: 88
[10] Elmer J W, Teruya A T, Errill P E. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-ID-141043, 2000
[11] Elmer J W, Teruya A T, Errill P E. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-JC-144232, 2001
[12] Gleen L, James L. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-87469, 1982
[13] Scott T B, Petherbridge J R, Findlay I, Glascott J, Allen G C. J Alloys Compd, 2009; 475: 766
[14] Petherbridge J R, Scott T B, Glascott J, Allen G C, Findlay I. J Alloys Compd, 2009; 476: 543
[15] Field R D, McCabe R J, Alexander D J, Teter D F. J Nucl Mater, 2009; 392: 105
[16] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541
[17] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511
[18] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565
[19] Dong D Y, Liu Y, Wang L, Su L G. Acta Metall Sin, 2013; 49: 159
[19] (董丹阳, 刘 杨, 王 磊, 苏亮进. 金属学报, 2013; 49: 159)
[20] Gourdin W H, Lassila D H. Acta Metall Mater, 1991; 39: 2337
[21] Chen Z Y, Cai H N, Wang F C, Tan C W, Zhan C K, Liu C M. Acta Metall Sin, 2009; 45: 143
[21] (陈志永, 才鸿年, 王富耻, 谭成文, 詹从堃, 刘楚明. 金属学报, 2009; 45: 143)
[22] Gong S L, Zhang J X, Pei Y, Yu Q. J Xi'an Jiaotong Univ, 2000; 34: 81
[22] (巩水利, 张建勋, 裴 怡, 于 琴. 西安交通大学学报, 2000; 34: 81)
[23] Xu Z J, Li Y L, Liu M S, Li P Z, Wu Y G. Acta Metall Sin, 2008; 44: 98
[23] (许泽建, 李玉龙, 刘明爽, 李朋洲, 吴云刚. 金属学报, 2008; 44: 98)
[24] Zhang J, Tan C W, Ren Y, Wang F C, Cai H N. Trans Nonferrous Met Soc China, 2011; 21: 39
[25] Cui Z Q,Qin Y C. Metallography and Heat Treatment. 2nd Ed., Beijing: China Machine Press, 2004: 266
[25] (崔忠圻,覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2004: 266)
[26] Kollie T G, Anderson R C, Carpenter D A, Smith D D. J Nucl Mater, 1984; 120: 160
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.