Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1260-1268    DOI: 10.11900/0412.1961.2014.00137
  本期目录 | 过刊浏览 |
Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响
谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章()
中国科学院金属研究所, 沈阳 110016
INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE
TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting(), ZHOU Lanzhang
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
Meilin TAN, Changshuai WANG, Yongan GUO, Jianting GUO, Lanzhang ZHOU. INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE[J]. Acta Metall Sin, 2014, 50(10): 1260-1268.

全文: PDF(6558 KB)   HTML
摘要: 

研究了2种Ti/Al比对新型Ni-Fe-Cr基合金GH984G在长达上万小时高温时效过程中γ′淀相的粗化行为及其拉伸性能的影响规律. 结果表明: 随时效温度从700 ℃升高至800 ℃, 球形γ′沉淀相的粗化速率明显增大. 在700和750 ℃长期时效过程中, 高Ti/Al比和低Ti/Al比合金γ′沉淀相的粗化行为均符合Lifshitz-Slyozof-Wagner (LSW) 理论, 受扩散过程控制, 高Ti/Al比合金中γ′沉淀相的粗化速率较高. 800 ℃长期时效过程中, 2种Ti/Al比合金γ′沉淀相的粗化行为偏离LSW理论. 此外, 时效时间小于3×103 h时, 高Ti/Al比合金的γ′沉淀相长大较快, 进一步延长时效时间, 低Ti/Al比合金的γ′沉淀相长大速率较快. Ti/Al比对合金标准热处理态和700~800 ℃时效10480 h后合金的700 ℃拉伸性能无明显影响. 通过选取合适的Ti/Al比, 可以控制γ′沉淀相的粗化行为, 增强合金组织稳定性.

关键词 Ni-Fe-Cr基合金长期时效γ′沉淀相粗化行为拉伸性能    
Abstract

GH984G is a new Ni-Fe-Cr base alloy which has been designed for use as superheater, reheater and header materials for boilers in 700 ℃ advanced ultra-supercritical (A-USC) coal-fired power plants. Compared with the CCA617, Nimonic 263 and IN 740 alloys, the GH984G is an economic alloy due to the elimination of Co and it containing more than 20%Fe. As a precipitation hardened alloy, the size of γ′ precipitates has great influence on the tensile properties. The γ′ precipitates become coarse during long-term thermal exposure. The coarsening behavior of γ′ precipitates is closely related with Ti/Al ratio. However, there are few investigations about the influence of Ti/Al ratio on the coarsening behavior of γ′ precipitates of GH984G alloy. Therefore, in this work, the coarsening behavior of γ′ precipitates and its influence on tensile properties of GH984G alloy with two Ti/Al ratios was investigated during long-term thermal exposure. The results show that the growth kinetic of the γ′ precipitates can be explained by Lifshitz-Slyozov-Wagner's theory of element diffusion controlled coarsening during long-term thermal exposure at 700 and 750 ℃. The rate of γ′ precipitates growth of the alloy with high Ti/Al ratio is higher. At 800 ℃, the rate of γ′ precipitates growth decreases with increasing the thermal exposure time. The coarsening behavior does not follow the Lifshitz-Slyozov-Wagner's theory. The reasons are attributed to the effect of elastic interaction energy and the depletion of γ′-forming elements in γ matrix. The Ti/Al ratio has no obvious influence on 700 ℃ tensile properties during long-term thermal exposure between 700 and 800 ℃. The 700 ℃ yield strength has no obviously decreases even if after thermal exposure at 700 ℃ for 10480 h. The ductility increases after thermal exposure at 800 ℃. The variation of strength and ductility is attributed to the coarsening of γ′ precipitation. The deformation mechanism is the moving dislocations shear γ′ precipitates and the stacking faults form in γ′ precipitates. The fracture mode is the mixture fracture mode. The Ti/Al ratio has no significance influence on the deformation mechanism and the fracture mode.

Key wordsNi-Fe-Cr base superalloy    long-term aging    γ′ precipitate    coarsening kinetics    tensile property
收稿日期: 2014-03-24     
ZTFLH:  TG111.8  
基金资助:* 国家高技术研究发展计划项目 2012AA03A501, 国家自然科学基金项目 51301171, 国家能源局项目 NY20110102-1和中国科学院-四川省成果转化项目资助
作者简介: null

谭梅林, 女, 1988年生, 硕士生

Alloy C B Cr Mo+Nb Fe Al Ti Ti+Al Ni Ti/Al
G1 0.04 0.006 20.1 3.41 20.5 0.98 0.99 1.97 Bal. 1.00
G2 0.04 0.006 20.0 3.44 20.6 0.83 1.18 2.01 Bal. 1.42
表1  GH984G合金化学成分
图1  不同Ti/Al比GH984G合金标准热处理态的微观组织
图2  不同Ti/Al比合金中析出物的显微组织和EDS
图3  高Ti/Al比GH984G合金在750 ℃长期时效过程中的γ′沉淀相形貌
图4  2 种Ti/Al 比合金在长期时效过程中γ′沉淀相尺寸变化规律
图5  2 种Ti/Al 比合金在长期时效过程中γ′沉淀相尺寸变化规律
Temperature / ℃ Al Ti
700 1.46×10-9 7.10×10-9
750 8.10×10-9 3.33×10-8
800 3.85×10-8 1.37×10-7
表2  Al和Ti在γ基体中的扩散系数
图6  不同Ti/Al比GH984G合金中γ′沉淀相的粗化规律
Alloy state Rm / MPa Rp0.2 / MPa d / % y / %
Ti/Al=1.00 Ti/Al=1.42 Ti/Al=1.00 Ti/Al=1.42 Ti/Al=1.00 Ti/Al=1.42 Ti/Al=1.00 Ti/Al=1.42
Standard heat
treatment
733 745 477 480 42 44 45.0 42.5
700 ℃ / 10480 h 745 745 545 535 40 42 43.0 45.0
750 ℃ / 10480 h 640 660 385 400 40 42 43.5 48.5
800 ℃ / 10480 h 560 565 265 250 64 61 60.0 59.0
表3  长期时效对GH984G合金拉伸性能的影响
图7  高Ti/Al比合金经长期时效后的700 ℃瞬时拉伸断口形貌和g′沉淀相中的位错组态
图8  不同Ti/Al比合金分切应力与γ′沉淀相尺寸的关系
  
[1] Evans N D, Maziasz P J, Swindeman R W, Smith G D. Scr Mater, 2004; 51: 503
[2] Rosler J, Gotting M, Genovese D. Adv Eng Mater, 2003; 5: 469
[3] Viswanathan V, Purgert R, Rawls P. Adv Mater Processes, 2008; 166: 47
[4] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[5] Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221
[5] (郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[6] Wu Q, Song H, Swindeman R W, Shingledecher J P, Vasudevan V K. Metall Mater Trans, 2008; 39: 2569
[7] Krishna R, Hainsworth S V,Gill S P A, Strang A, Atrinson H V. Metall Mater Trans, 2013; 44: 1419
[8] Rautio R, Bruce S. Adv Mater Processes, 2008; 166: 35
[9] Shingledecker J P, Pharr G M. Metall Mater Trans, 2012; 43A: 1902
[10] Tokairin T, Dahl K V, Danielsen H K, Grumsen F B, Sato T, Hald J. Mater Sci Eng, 2013; A565: 285
[11] Li J, Wahi R P. Acta Metall Mater, 1995; 43: 507
[12] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q. Mater Des, 2011; 32: 4810
[13] Wang C S,Wang T T,Tan M L,Guo Y A,Guo J T,Zhou L Z. J Mater Sci Technol, 2014;
[14] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[15] Wagner C. Z Elektrochem, 1961; 65: 581
[16] Ardell A J. Acta Metall, 1972; 20: 61
[17] Voorhees P W, Glicksman M E. Acta Metall, 1984; 32: 51
[18] Enomoto Y, Tokuyama M, Kawasaki K. Acta Metall, 1986; 34: 2119
[19] Muralidharan G, Chen H. Adv Mater, 2000; 1: 51
[20] Xiao X, Zhao H Q, Wang C S, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2013; 49: 421
[20] (肖 旋, 赵海强, 王常帅, 郭永安, 郭建亭, 周兰章. 金属学报, 2013; 49: 421)
[21] Guo J T. Acta Metall Sin, 1978; 3: 227
[21] (郭建亭. 金属学报, 1978; 3: 227)
[22] Qin X Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
[22] (秦学智.中国科学院金属研究所博士学位论文, 沈阳, 2004)
[23] Hou J S, Guo J T, Zhou L Z. Acta Metall Sin, 2006; 42: 481
[23] (侯介山, 郭建亭, 周兰章. 金属学报, 2006; 42: 481)
[24] Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183
[25] Sims C T,Stoloff N S,Hagel W C,translated by Zhao J,Zhu S J,Li X G,Wang F G. Superalloy. Dalian: Dalian Uuniversity of Technology Press, 1992: 69
[25] (Sims C T,stoloff N S,Hagel W C著;赵 杰,朱世杰,李晓刚,王富岗 译. 高温合金. 大连: 大连理工大学出版社,1992: 69)
[26] Minamino Y, Jung S B, Yamane T, Hirao K. Metall Mater Trans, 1992; 23: 2783
[27] Gomez-Acebo T, Navarcorena B, Castro F. J Phase Equilib, 2004; 25: 237
[28] Ges A, Fornaro O, Palacio H. J Mater Sci, 1997; 32: 3687
[29] Berahmand M, Sajjadi S A. Taylor Francis Online, 2012; 8: 85
[30] Hou J S, Zhang Y L, Guo J T, Ji G, Zhou L Z, Ye H Q. Acta Metall Sin, 2004; 40: 579
[30] (侯介山, 张玉龙, 郭建亭, 冀 光, 周兰章, 叶恒强. 金属学报, 2004; 40: 579)
[31] Jackson M P, Reed R C. Mater Sci Eng, 1999; A259: 85
[32] Huther W, Reppich B. Z Metall, 1978; 69: 628
[33] Reppich B. Acta Metall, 1982; 30: 87
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[7] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 王常帅,郭莉莉,唐丽英,周荣灿,郭建亭,周兰章. GH984G合金在700 ℃水蒸气中的氧化行为[J]. 金属学报, 2019, 55(7): 893-901.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[13] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[14] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[15] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.