Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 41-48    DOI: 10.3724/SP.J.1037.2013.00352
  论文 本期目录 | 过刊浏览 |
低温挤压Mg-4Zn-2Al-2Sn合金的组织与力学性能研究*
赵东清1,2, 周吉学2, 刘运腾2, 董旭光1, 王晶1, 杨院生1,2()
1 中国科学院金属研究所, 沈阳110016
2 山东省科学院新材料研究所, 济南250014
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES
ZHAO Dongqing1,2, ZHOU Jixue2, LIU Yunteng2, DONG Xuguang1, WANG Jing1, YANG Yuansheng1,2()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Institute of New Materials Research, Shandong Academy of Sciences, Jinan 250014
引用本文:

赵东清, 周吉学, 刘运腾, 董旭光, 王晶, 杨院生. 低温挤压Mg-4Zn-2Al-2Sn合金的组织与力学性能研究*[J]. 金属学报, 2014, 50(1): 41-48.
Dongqing ZHAO, Jixue ZHOU, Yunteng LIU, Xuguang DONG, Jing WANG, Yuansheng YANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES[J]. Acta Metall Sin, 2014, 50(1): 41-48.

全文: PDF(11253 KB)   HTML
摘要: 

研究了Mg-4Zn-2Al-2Sn合金在225, 250和275 ℃挤压变形后的微观组织、织构及其力学性能. 结果表明: 在3种挤压温度下合金均发生了完全动态再结晶, 晶粒尺寸分别为4.4, 7.1和10.5 μm. 挤压温度直接影响到晶粒内部第二相的析出, 在225 ℃挤压时, 在晶粒内部可观察到尺寸为20~60 nm的不规则形貌的Mg2Sn析出相, 挤压温度升高到275 ℃, 第二相析出增多, Mg2Sn颗粒长大到500 nm左右, 并观察到沿挤压方向呈流线分布的微米级Mg32(Al, Zn)49. 在225和250 ℃挤压时, 形成了单一的平行于挤压方向的基面织构, 当温度升高到275 ℃时, 棱柱面滑移临界剪切应力急剧降低, 棱柱面滑移系启动, 形成了除基面织构以外的棱柱面平行于挤压方向的 { 1 0 1 - 0 } < 0002 >织构, 这种取向在沿挤压方向压缩时, 压应力平行于c轴方向, 不利于拉伸孪晶 { 1 0 1 - 2 } < 1 0 1 - 1 > 的形成, 导致275 ℃挤压样品拉压不对称性不明显, 压缩与拉伸屈服强度之比为0.95.

关键词 镁合金低温挤压组织力学性能    
Abstract

Due to the high demand of light-weight alloys in automotive applications, wrought magnesium (Mg) alloys, applied as automotive sheet and extrusions, are attracting great attention. However, some inherent disadvantages of common wrought Mg alloys have limited their application, such as poor corrosion resistance, poor creep resistance and low formability. It is well known that Sn can provide thermally stable Mg2Sn particles in the matrix of magnesium alloys. Our previous study shows that the Mg-4Zn-2Al-2Sn alloy has potential to be developed into a wrought Mg alloy. Currently, the microstructure, texture and mechanical properties of Mg-4Zn-2Al-2Sn alloy extruded at temperatures of 225, 250 and 275 ℃ have been investigated, where complete dynamic recrystallization occurred during extrusion and the average grain size was reduced to 4.4, 7.1 and 10.5 μm, respectively. The amount and morphology of the second phases were directly influenced by the extrusion temperature. Extruded at 225 ℃, irregular Mg2Sn phase in size of 20~60 nm precipitated in the grains. With the extrusion temperature increasing to 275 ℃, Mg2Sn of about 500 nm and micron-size Mg32(Al, Zn)49 precipitates were observed. The {0002} texture was formed at 225 and 250 ℃ during the extrusion. While the temperature increased to 275 ℃, due to the activation of prismatic slip system, { 1 0 1 - 0 } < 0002 > texture of prismatic plane parallel to extrusion direction was also observed. When compressive stress loaded along the extrusion direction, the { 1 0 1 - 0 } < 0002 > texture suppressed the activation of the tensile twinning { 1 0 1 - 2 } < 1 0 1 - 1 > , which leads to a decrease of asymmetry between tension and compression.

Key wordsmagnesium alloy    extrusion at low temperature    microstructure    mechanical property
收稿日期: 2013-06-25     
ZTFLH:  TG146.2  
基金资助:* 国家支撑计划项目2011BAE22B01-1, 国家国际科技合作计划项目2011DFA50903和山东省自然科学基金项目ZR2010EQ021资助
作者简介: null

赵东清, 女, 1982年生, 博士生

图1  
图2  
图3  
图4  
Area Mg Zn Al Sn
A 74.43 18.79 6.72 0.06
B 76.57 14.89 8.43 0.11
表1  图4e中第二相EDS分析结果
图5  
Extrusion temperature
Tensile property Compressive property
R

Yield strength
MPa
Ultimate strength
MPa
Elongation
%
Yield strength MPa Ultimate strength
MPa
Elongation
%
225 211.7 317.5 27.6 186.3 451.0 -17.6 0.88
250 176.7 296.3 24.0 158.6 442.0 -18.0 0.89
275 173.8 293.8 23.6 165.8 458.7 -16.5 0.95
  
图6  
图7  
[1] Kashefi N, Mahmudi R.Mater Des, 2012; 39: 200
[2] Song D H, Lee S W, Park Y D, Park Y H, Cho K M, Park I M. Mater Sci Forum, 2007; 539-543: 1790
[3] Chen Z H,Yan H G,Chen J H,Quan Y J,Wang H M,Chen D. Magnesium Alloys. Beijing: Chemical Industry Press, 2004: 202
[3] (陈振华,严红革,陈吉华,全亚杰,王慧敏,陈 鼎. 镁合金. 北京: 化学工业出版社, 2004: 202)
[4] Sasaki T T, Yamamoto K, Honma T, Kamado S, Hono K. Scr Mater, 2008; 59: 1111
[5] Liu C M,Zhu X R,Zhou H T. Magnesium Alloy Phase Diagrams. Nanjing: Southeast University Press, 2006: 49
[5] (刘楚明,朱秀荣,周海涛. 镁合金相图集. 南京: 东南大学出版社, 2006: 49)
[6] Bronfin B, Aghion E, Buch F V, Schumann S, Katzir M. US Pat,7041179B2, 2006
[7] Dong X G, Fu J W, Yang Y S. Acta Metall Sin, 2013; 49: 621
[7] (董旭光, 付俊伟, 杨院生. 金属学报, 2013; 49: 621)
[8] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H.J Alloys Compd, 2009; 468: 308
[9] Chen J H, Chen Z H, Yan H G, Zhang F Q, Kun L.J Alloys Compd, 2008; 461: 209
[10] Zhao D Q, Dong X G, Zhang X E, Gao A J, Zhou J X, Yang Y S. Mater Sci Forum, 2013; 747-748: 398
[11] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413-414: 555
[12] Henes S, Gerold V. ZMetallk, 1962; 53: 743
[13] Rabkin E.Scr Mater, 1998; 39: 1631
[14] Li W B, Easterling K E.Acta Metall Mater, 1990; 38: 1045
[15] Mendis C L, Ohishi K, Kawamura Y, Honma T, Kamado S, Hono K.Acta Mater, 2009; 57: 749
[16] Park S S, You B S, Yoon D J.J Mater Process Technol, 2009; 209: 5940
[17] Shahzad M, Wagner L.Mater Sci Eng, 2009; A506: 141
[18] Yang P, Hu Y S, Cui F E. ChinJ Mater Res, 2004; 18: 52
[18] (杨 平, 胡轶嵩, 崔凤娥. 材料研究学报, 2004; 18: 52)
[19] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31
[20] Wang Y N, Huang J C.Acta Mater, 2007; 55: 897
[21] Barnett M R.Scr Mater, 2008; 59: 696
[22] Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226
[23] Jain J, Poole W J, Sinclair C W, Gharghouri M A.Scr Mater, 2010; 62: 301
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.