Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 11-18    DOI: 10.3724/SP.J.1037.2013.00342
  论文 本期目录 | 过刊浏览 |
晶界角度对一种镍基双晶高温合金持久性能的影响*
曹亮, 周亦胄(), 金涛, 孙晓峰
中国科学院金属研究所, 沈阳 110016
EFFECT OF GRAIN BOUNDARY ANGLE ON STRESS RUPTURE PROPERTIES OF A Ni-BASED BICRYSTAL SUPERALLOY
CAO Liang, ZHOU Yizhou(), JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

曹亮, 周亦胄, 金涛, 孙晓峰. 晶界角度对一种镍基双晶高温合金持久性能的影响*[J]. 金属学报, 2014, 50(1): 11-18.
Liang CAO, Yizhou ZHOU, Tao JIN, Xiaofeng SUN. EFFECT OF GRAIN BOUNDARY ANGLE ON STRESS RUPTURE PROPERTIES OF A Ni-BASED BICRYSTAL SUPERALLOY[J]. Acta Metall Sin, 2014, 50(1): 11-18.

全文: PDF(16445 KB)   HTML
摘要: 

研究了晶界角度对一种镍基双晶高温合金持久性能的影响. 结果表明, 双晶试样的持久性能低于单晶试样. 随着晶界角度的增加, 试样的持久性能降低, 断裂方式逐步由穿晶断裂向沿晶断裂过渡. 随着温度的升高, 由穿晶断裂过渡到沿晶断裂的临界晶界角度变小. 871 ℃, 552 MPa条件下, 12°晶界断口开始出现沿晶断裂特征; 1100 ℃, 120 MPa条件下, 4.5°晶界断口开始出现沿晶断裂特征.

关键词 镍基高温合金晶界角度持久性能    
Abstract

Bicrystal slabs with different grain boundary angles were cast to study the effect of varied grain boundary angle on stress rupture properties of a Ni-based bicrystal superalloy. It was found that the stress rupture lives of single crystal specimens were superior to those with grain boundaries. With the increase of grain boundary angle, the stress rupture life was decreased and the fracture type was transferred from trans-granular to inter-granular fracture. The reduced rupture properties was attributed to the inhabitation of grain boundary on slip deformation. With the rise of temperatures, the effect of grain boundaries on rupture properties was enhanced and the critical value of grain boundary angle from trans-granular to inter-granular fracture was decreased. Inter-granular fracture occurred from 12° grain boundary in the rupture test of 871 ℃ and 552 MPa, and it occurred from 4.5° grain boundary in the rupture test of 1100 ℃ and 120 MPa. Since the grain boundary became weaker at higher temperature, the angle of low-angle boundary in single crystal superalloys should be controlled strictly.

Key wordsNi-based superalloy    grain boundary angle    stress rupture property
收稿日期: 2013-06-24     
ZTFLH:  TG146  
基金资助:* 国家自然科学基金项目U1037601, 51271186 和51001103, 国家重点基础研究发展计划项目2010CB631206 及中国科学院百人计划项目资助
图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
[1] Jia Y X, Jin T, Liu J L, Sun X F, Hu Z Q.Acta Metall Sin, 2009; 45: 1364
[1] (贾玉贤, 金 涛, 刘金来, 孙晓峰, 胡壮麒. 金属学报, 2009; 45: 1364)
[2] Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2010; 46: 1327
[2] (周亦胄, 金 涛, 孙晓峰. 金属学报, 2010; 46: 1327)
[3] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Champion, PA: TMS, 1992: 125
[4] Bussac A, Gandin C.Mater Sci Eng, 1997; A237: 35
[5] Tamaki H, Yoshinari A, Okayama A, Nakamura S, Kageyama K, Sato K, Ohno T. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000. Reno, NV: TMS, 2000: 757
[6] Chandra N, Dang P.J Mater Sci, 1999; 34: 655
[7] Gottstein G, Shvindlerman L S.Scr Metall Mater, 1992; 27: 1515
[8] Tavakkoli M M, Abbasi S M.Mater Des, 2013; 46: 573
[9] Zheng L, Xu T D, Deng Q, Dong J X.Mater Lett, 2008; 62: 54
[10] Ping D H, Gu Y F, Cui C Y, Harada H.Mater Sci Eng, 2007; A456: 99
[11] Ross E W, O′hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollok T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 19
[12] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Reno, NV: TMS, 2000: 295
[13] Nitta H, IijimaY, Tanaka K, Yamazaki Y, Lee CG, Matsuzaki T, Watanabe T.Mater Sci Eng, 2004; A382: 250
[14] Zhou Y Z.Scr Mater, 2011; 65: 281
[15] Zhou Y Z, Volek A, Green N R.Acta Mater, 2008; 56: 2631
[16] Zhou Y Z, Green N R. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Champion, PA: TMS, 2008: 317
[17] Zhou Y Z, Volek A.Scr Mater, 2006; 54: 2169
[18] Peralta P, Schober A, Laird C.Mater Sci Eng, 1993; A169: 43
[19] Wang G J.Central Iron Steel Res Inst Tech Bull, 1986; 6(4): 25
[19] (王桂金. 钢铁研究学报, 1986; 6(4): 25)
[20] Liu L R. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
[20] (刘丽荣. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[21] Maclachlan D W, Knowles D M.Mater Sci Eng, 2001; A302: 275
[22] Savitsky E M,translated by Duan Z. Effect of Temperature on the Metal and Alloy Mechanical Properties Beijing: China Industry Press, 1965: 33
[22] (Савицкий E M著,段 中 译. 温度对金属及合金机械性能的影响. 北京: 中国工业出版社, 1965: 33)
[23] Friedel J,translated by Wang Y. Dislocations. Beijing: Science Press, 1980: 215
[23] (Friedel J 著,王 煜 译. 位错. 北京: 科学出版社, 1980: 215)
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[8] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[12] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[13] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[14] 郭小童, 郑为为, 李龙飞, 冯强. 冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666.
[15] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.