Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 853-862    DOI: 10.3724/SP.J.1037.2013.00064
  论文 本期目录 | 过刊浏览 |
定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化
李小飞,郭喜平
西北工业大学凝固技术国家重点实验室,西安710072
EUTECTIC MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY
LI Xiaofei, GUO Xiping
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

李小飞,郭喜平. 定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化[J]. 金属学报, 2013, 49(7): 853-862.
LI Xiaofei, GUO Xiping. EUTECTIC MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. Acta Metall Sin, 2013, 49(7): 853-862.

全文: PDF(9051 KB)  
摘要: 

在熔体温度为2000℃的条件下,分别以2.5, 5, 10, 20, 50和100μm/s的抽拉速率对Nb-Ti-Si基超高温合金进行了有坩埚整体定向凝固.采用XRD, SEM和EDS等分析方法,研究了抽拉速率对定向凝固共晶组织及固/液界面形貌的影响,并分析了该合金的凝固过程. 结果表明:合金定向凝固组织主要由沿着试棒轴向排列的横截面呈花瓣状的共晶胞Eutectic I(Nbss/α(Nb,X)5Si3)以及分布于共晶胞周围的沿试棒轴向耦合生长的共晶组织EutecticII(Nbss/γ(Nb, X)5Si3组成.随着凝固速率的增大, 组织细化,花瓣状共晶胞由以硅化物或细小共晶为中心的近似圆形形貌逐渐演变为以十字形Nbss为中心、α (Nb,X)5Si3呈片状向外辐射生长的四边形形貌; EutecticII则呈沿纵向耦合生长的层片状形貌. 固/液界面形貌经历了由胞枝状→树枝状→胞枝状的演变过程.

关键词 Nb-Ti-Si基超高温合金整体定向凝固固/液界面形貌共晶组织    
Abstract

Nb-Ti-Si base ultrahigh temperature alloys that possess higher melting points, relatively lower densities and attractive high temperature strength have received worldwide attention for their potential applications as next-generation turbine blade materials. In this work, integrally directional solidification of an Nb-Ti-Si base ultrahigh temperature alloy was conducted at different withdrawing rates (2.5, 5, 10, 20, 50 and 100 μm/s) with a constant melt temperature of 2000℃. Effect of solidifying rate on the integrally directionally solidified eutectic microstructure and solid/liquid interface morphology of this alloy has been investigated by XRD, SEM and EDS, and its directional solidification behavior has been discussed. The results show that the directionally solidified microstructure is mainly composed of petal-like Nbss/α(Nb,X)5Si3 eutectic colonies (Eutectic I) and coupled grown lamellar Nbss/γ(Nb,X)5Si3 eutectic (Eutectic II) which distributed in the intercellular area. The Eutectic I and Eutectic II are both aligned straight and uprightly along the growth direction. When the solidifying rate increases from 2.5 μm/s to 100 μm/s, the microstructure becomes finer and finer, and the petal-like eutectic colonies evolve from round morphology to tetragonal morphology. Either silicides or fine eutectics locate in the centers of round eutectic cells, while cross-like Nbss locates in the centers of tetragonal eutectic cells. Eutectic II exhibits a well-aligned lamellar structure on longitudinal-section. The solid/liquid interface of the alloy undergoes an evolution from cellular dendrite, dendrite and finally to cellular dendrite morphologies.

Key wordsNb-Ti-Si base ultrahigh temperature alloy    integrally directional solidification    solid/liquid interface morphology    eutectic microstructure
收稿日期: 2013-01-30     
基金资助:

国家自然科学基金项目51071124,高等学校博士学科点专项科研基金项目20096102110012和高等学校学科创新引智计划项目B080401资助

作者简介: 李小飞, 男, 1988年生, 硕士生

[1]Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendirstta M G, Lewandowski J J. MRS Bull, 2003; 28: 646

[2]Bewlay B P, Jackson M R, Zhao J C, Subramanian P R.Metall Mater Trans, 2003; 34A: 2043
[3]Kang Y W, Qu S Y , Song J X , Han Y F. Acta Metall Sin, 2008; 44: 593
(康永旺, 曲士昱, 宋尽霞, 韩雅芳. 金属学报, 2008; 44: 593)
[4]Kim W Y, Tanaka H, Kasama A, Hanada S.Intermetallics, 2001; 9: 827
[5]Guo X P, Guo H S, Yao C F. Int J Mod Phys, 2009;23B: 1093
[6]Qu S Y, Han Y F, Song L G. Intermetallics, 2007;15: 810
[7]Li Z, Peng L M. Acta Mater, 2007; 55: 6573
[8]Guo H S, Guo X P. Scr Mater, 2011; 64: 637
[9]Yang Y, Bewlay B P, Chang Y A. J Phase Equilib Diffus, 2007; 28: 107
[10]Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008;44: 579
(姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)
[11]Guo X P, Gao L M. J Aeronaut Mater, 2006; 26(3):47
(郭喜平, 高丽梅. 航空材料学报, 2006; 26(3): 47)
[12]Tian Y X, Guo J T, Cheng G M, Sheng L Y, Zhou L Z, He L L,Ye H Q. Mater Des, 2009; 30: 2274
[13]Cheng G M, He L L. Intermetallics, 2011; 19: 196
[14]Su L F, Jia L N, Feng Y B, Zhang H R, Yuan S N, Zhang H.Mater Sci Eng, 2013; 560: 672
[15]Wang Y, Guo X P. Acta Metall Sin, 2010; 46: 506
(王勇, 郭喜平. 金属学报, 2010; 46: 506)
[16]He Y S, Guo X P. Acta Metall Sin, 2009; 45: 1035
(何永胜, 郭喜平. 金属学报, 2009; 45: 1035)
[17]Zelenitsas K, Tsakiropoulos P. Intermetallics,2005; 13: 1079
[18]Qu S Y, Han Y F, Kang Y W. Sci China, 2009; 52E:37
[19]Sun Z P, Guo X P, He Y S, Guo J M, Yang Y, Chang Y A.Intermetallics, 2010; 18: 997
[20]Geng J, Tsakiropoulos P, Shao G S. Intermetallics,2007; 15: 69
[21]Wang L G, Jia L N, Cui R J, Zheng L J, Zhang H.Chin J Aeronaut, 2012; 25: 292
[22]Fu H Z, Guo J J, Liu L, Li J S. DirectionalSolidification and Processing of Advanced Materials. Beijing:Science Press, 2008: 29
(傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京:科学出版社, 2008: 29)
[23]Zhou Y H, Hu Z Q, Jie W Q. Solidification Processing. Beijing: China Machine Press, 1998: 158
(周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998:158)
[24]Hu H Q. Fundamental of Metallic Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 165
(胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 165)

[25]Tang L, Ma C L, Zhao X Q. Rare Met Mater Eng,2009; 38: 8

[1] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[2] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[3] 曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
[4] 陈正, 杨亚楠, 陈强, 许军峰, 唐跃跃, 刘峰. 过冷Fe82B17Si1合金的再辉效应模拟及组织演化*[J]. 金属学报, 2014, 50(7): 795-801.
[5] 袁超,周兰章,李谷松,郭建亭. 高性能NiAl共晶合金JJ­­—3[J]. 金属学报, 2013, 49(11): 1347-1355.
[6] 赵朋 李双明 傅恒志. 定向凝固Al-40%Cu合金三维微观组织重构及共晶间距演变[J]. 金属学报, 2012, 48(1): 33-40.
[7] 张平 郭喜平. Al对Nb-Ti-Si基合金表面Si-Al-Y2O3共渗层的影响[J]. 金属学报, 2010, 46(7): 821-831.
[8] 全琼蕊 李双明 傅恒志. 凝固速率跃迁对定向凝固Al-40%Cu过共晶合金初生Al2Cu相的影响[J]. 金属学报, 2010, 46(4): 500-505.
[9] 王勇 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J]. 金属学报, 2010, 46(4): 506-512.
[10] 何永胜 郭喜平 郭海生 孙志平. 铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化[J]. 金属学报, 2009, 45(9): 1035-1041.
[11] 姚成方; 郭喜平; 郭海生 . Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析[J]. 金属学报, 2008, 44(5): 579-584 .
[12] 徐达鸣;曹福洋;李庆春. 变速定向生长条件下Pb-Sn共晶组织变化[J]. 金属学报, 1995, 31(11): 494-500.
[13] 徐达鸣;李庆春;王永前. 定向共晶组织的熔化行为[J]. 金属学报, 1993, 29(10): 28-32.
[14] 丁培道;石功奇;周守则. Fe-Mo-C合金铸态组织的电镜观察[J]. 金属学报, 1990, 26(6): 15-18.