Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00679
  论文 本期目录 | 过刊浏览 |
Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为
韦天国1),龙冲生1),苗志1),刘云明1),栾佰峰2)
1)中国核动力研究设计院反应堆燃料及材料重点实验室, 成都 610041
2)重庆大学材料科学与工程学院, 重庆 400044
CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM
WEI Tianguo1), LONG Chongsheng1), MIAO Zhi1), LIU Yunming1)
1)Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041
2)Institute of Material Science and Technology, Chongqing University, Chongqing 400044
引用本文:

韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming, LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. Acta Metall Sin, 2013, 49(6): 717-724.

全文: PDF(2553 KB)  
摘要: 

采用真空非自耗电弧熔炼方法制备了4种不同Mo含量的Zr-0.4Fe-1.0Cr-xMo(x=0, 0.2, 0.4, 0.6, 质量分数, %)合金材料,研究了其在500℃, 10.3 MPa过热水蒸汽中的耐腐蚀性能以及添加Mo对合金耐腐蚀性能的影响.结果表明, Zr-0.4Fe-1.0Cr-xMo合金中含有大量细小的第二相粒子, 其腐蚀速率远远低于Zr-4,N18和M5合金. Mo的添加促进了氧化膜生长过程中的演变, 降低了耐腐蚀性能.不含Mo合金的氧化膜生长动力学在整个腐蚀周期(2000 h)内一直保持近似立方规律,而含Mo合金的氧化膜生长动力学在500--1000 h内由近似立方规律向直线规律转变.

关键词 锆合金Mo耐腐蚀性能第二相粒子氧化膜    
Abstract

The possibility of using Mo as an alloying element in zirconium alloys was considered in terms of its strengthening effect and microstructure refinement effect. However, the impact of Mo addition on the corrosion resistance was not fully understood. In this work, Zr-0.4Fe-1.0Cr-x Mo (x=0, 0.2, 0.4, 0.6, mass fraction,%) alloys with addition of different Mo contents were prepared by vacuum arc melting method and their corrosion resistance in 500℃, 10.3 MPa steam was investigated. Compared with Zr-4, N18 and M5 alloys, the corrosion rate of Zr-0.4Fe-1.0Cr-x Mo alloys was much lower, which was attributed to the large numbers of fine second phase particles in the matrix. Addition of Mo improved the evolution of the oxide film during growth and resulted in the degradation of corrosion resistance. The growth of the oxides remained cubic kinetics in the whole corrosion period (2000 h) for the Mo free alloy, whereas changed from cubic to linear kinetics after a corrosion time of 500--1000 h for the Mo containing alloys.

Key wordszirconium alloy    Mo    corrosion resistance, second phase particle    oxide film
收稿日期: 2012-11-12     
基金资助:

国家自然科学基金资助项目51171175

作者简介: 韦天国, 男, 1985年生, 硕士

[1] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 505

[2] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R, Sabol G P eds.,Zirconium in the Nuclear Industry: 11th International Symposium,  ASTM STP 1295,West Conshonocken: ASTM International, 1996: 710
[3] Garde A. In: Limbak M, Bareris P eds.,  Zirconium in the Nuclear Industry,16th International Symposium, ASTM STP 1529, West Conshonocken: ASTM International, 2010: 9
[4] Pahutova M, Kucharova K, Cadek J.  Mater Sci Eng, 1977; 27: 239
[5] Pahutova M, Cadek J.  Mater Sci Eng, 2004; 33: 1362
[6] Chun Y B, Hwang S K, Kim M H, Kwun S I, Kim Y S.  J Nucl Mater, 1999; 265: 28
[7] Isobe T, Matsuo Y. In: Eucken C M, Garde A M eds.,Zirconium in the Nuclear Industry, 9th International Symposium, ASTM STP 1132,West Conshonocken: ASTM International, 1991: 346
[8] Chun Y B, Hwang S K, Kwun S I, Kim M H.  Scr Mater, 1999; 40: 1165
[9] Lee J H, Hwang S K, Yasuda K, Kinoshita C.  J Nucl Mater, 2001; 289: 334
[10] Moon J R, Lees D G.  Corros Sci, 1970; 10: 85
[11] Moon J R, Evans E W.  Corros Sci, 1969; 9: 323
[12] Lee J H, Hwang S K.  J Nucl Mater, 2003; 321: 238
[13] George P S, Robert J C, Umesh P N. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Syposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 525
[14] Motta A T, Aylin Y, Marcelo J G, Comstock R J, Was G S, Busby J T,Gartner E, Peng Q J, Jeong Y H, Park J Y.  J Nulc Mater, 2007; 371: 61
[15] Wang J, Long C S, Xiong J, Miao Z, Fang H Y, Huang Z H, Ying S H.  Nucl Power Eng,2009; 30: 58
(王均, 龙冲生, 熊计, 苗志, 范洪远, 黄照华, 应诗浩. 核动力工程, 2009; 30: 58)
[16] Yao M Y, Wang J H, Peng J C, Zhou B X, Li Q. In: Limbak M, Bareris P eds.,Zirconium in the Nuclear Industry, 16th International Symposium, ASTM STP 1529, West Conshonocken:ASTM International, 2011: 466
[17] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X.  Acta Metall Sin, 2011; 47: 163
(李士炉, 姚美意, 张欣, 耿建桥, 彭建超, 周邦新. 金属学报, 2011; 47: 163)
[18] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.  Acta Metall Sin, 2011; 47: 865
(姚美意, 李士炉, 张欣, 彭建超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[19] Barberis P, Merle-Mejean T, Quintard P.  J Nulc Mater, 1997; 246: 232
[20] Barberis P, Corroleur T G, Guinbretiere R, Merle M T, Mirgorodsky A,Quintard P.  J Nulc Mater, 2001; 288: 241
[21] Godlewski J, Gross J P, Lambertin M, Wadier J F, Weidinger H. In:Eucken C M, Garde A M eds.,  Zirconium in the Nuclear Industry, 9th International Symposium,ASTM STP 1132, West Conshonocken: ASTM International, 1991: 416
[22] Liu J Z ed.  Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 27
(刘建章~ 主编. 核结构材料. 北京: 化学工业出版社, 2007: 27)
[23] Li Q, Zhou B X, Yao M Y, Liu W Q, Chu Y L.  Rare Met Mater Eng, 2007; 36: 1358
(李强, 周邦新, 姚美意, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1358)
[24] IAEA-TECDOC-996.  Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. Vienna, IAEA, 1998: 9
[25] Jong H B, Yong H J.  J Nulc Mater, 2000; 280: 235
[26] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kamenzind B, Limback M eds.,Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505,West Conshonocken: ASTM International, 2009: 360
[27] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L.  Rare Met Mater Eng, 2006; 35: 1009
(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[5] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[7] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[8] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[9] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[10] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[11] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[12] 栾晓圣, 梁志强, 赵文祥, 石贵红, 李宏伟, 刘心藜, 祝国荣, 王西彬. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
[13] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[14] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[15] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.