Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1422-1430    DOI: 10.3724/SP.J.1037.2012.00291
  论文 本期目录 | 过刊浏览 |
等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能
杨沐鑫1,2,杨钢2,刘正东2,杜习乾2,黄崇湘3
1. 昆明理工大学材料科学与工程学院, 昆明 650093\par
2. 钢铁研究总院结构材料研究所, 北京 100081\par
3. 四川大学建筑与环境学院, 成都 610065
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT
YANG Muxin 1,2, YANG Gang 2, LIU Zhengdong 2, Du Xiqian 2, HUANG Chongxiang 3
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
3. College of Architecture and Environment, Sichuan University, Chengdu 610065
引用本文:

杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.
YANG Muxin Gang LIU Zhengdong Du Xiqian HUANG Chongxiang. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT[J]. Acta Metall Sin, 2012, 48(12): 1422-1430.

全文: PDF(2454 KB)  
摘要: 

研究了固溶态0Cr13铁素体不锈钢经室温2道次等径转角挤压(ECAP)及退火处理后的微观结构和力学性能.光学显微镜和透射电镜观察表明, 经ECAP挤压变形和650--750 ℃退火后, 样品发生部分再结晶, 内部残留约10%-35%(体积分数)均匀分布的岛状超细晶基体. 统计表明, 再结晶晶粒和超细晶晶粒尺寸呈双峰分布, 平均晶粒尺寸分别为5.1---8.3 μm和418---525 nm. 拉伸和冲击测试结果表明, 优选的ECAP挤压变形+700℃退火处理工艺, 能够使实验钢获得与常规使用态(锻后700℃退火)相当的冲击韧性(212 J/cm2),以及比后者更高的屈服强度、均匀塑性和静力韧度(分别提高10%, 35%和70%). 组织细化和应变硬化能力的提高是造成挤压后退火样品综合力学性能提高的原因.

关键词 0Cr13铁素体不锈钢 等径转角挤压(ECAP) 微观结构 拉伸性能 冲击韧性    
Abstract

In comparison with austenitic stainless steel, the ferritic stainless steel has obvious advantage in price due to its lower nickel content. However, the relatively poor ductility and toughness limit its applications. To overcome these shortcomings, a new thermo–mechanical approach, involving processing by severe plastic deformation and proper annealing treatment to introduce a bimodal grain size distribution, was adopted for achieving high work–hardening capability, superior strength–ductility combination and good impact toughness in metallic materials. In this work, the combined effects of severe plastic deformation and partially recrystallization on the microstructures and mechanical properties of a ferritic stainless steel were investigated and compared with the traditional forging and annealing process. An solution–treated ferritic stainless steel (0Cr13, AISI 405) was subjected to equal–channel angular pressing (ECAP, an important kind of severe plastic deformation) for two passes at room temperature and subsequent annealing treatments. Optical microscope (OM) and transmission electron microscopy (TEM) observations showed that ultrafine-grained (UFG) structure was obtained in the ECAP–processed sample. After subsequent annealing at 650—750 ℃ for 1 h, partial recrystallization occurred and the remaining island–like UFG grains (10%—35% volume fraction) distributed uniformly. Statistical measurements indicated that the microstructures of the annealed ECAP samples exhibited a bimodal grain size distribution including relatively coarse recrystallized grains (CRGs) and remaining ultrafine grains (UFGs). The average grain size for CRGs determined from OM observations was 5.1—8.3 μm and the average grain size for UFGs measured from TEM observations was 418—525 nm. By contrast, the annealed forged sample (700℃) exhibited a unimodal grain size distribution with average grain size of about 74 μm. Tensile and impact tests showed that the strength of 0Cr13 ferritic stainless steel could be improved greatly through grain refinement by ECAP process, and the strength–ductility combination could be modulated via sacrificing some strength for ductility by subsequent annealing treatment. In comparison with the conventional sample (forging+annealing at 700 ℃), the tested steel processed by the optimal processing involving ECAP deformation and annealing treatment at 700℃ showed higher yield strength, uniform ductility and static toughness (enhanced by 10%, 35% and 70% respectively), simultaneously a comparable impact toughness (212 J/cm2). The refined microstructure and higher work–hardening capacity were responsible for the improved mechanical properties of the annealed ECAP samples and the strengthening mechanisms were discussed based on the experimental results.

Key words0Cr13 ferritic stainless steel    equal–channel angular pressing (ECAP)    microstructure    tensile properties    impact toughness
收稿日期: 2012-05-22     
ZTFLH:  TG142.1  
基金资助:

国家自然科学基金项目50971045,11172187和中央高校基本科研业务费0212SCU04A05资助

作者简介: 杨沐鑫, 男, 1982年生, 博士生

[1] Fujita T. Translated by Ding W H, Zhang X J, Chen Y Z. Heat Treatment of Stainless Steels. Beijing: China Machine Press, 1983: 106

(藤田辉夫著, 丁文华, 张绪江, 陈玉璋译. 不锈钢的热处理. 北京: 机械工业出版社, 1983: 106)

[2] Lu S Y, Zhang T K, Kang X F, Yang C Q, Wang X. Stainless Steel. Beijing: Atomic Energy Press, 1995: 77

(陆世英, 张廷凯, 康喜范, 杨长强, 王 熙. 不锈钢. 北京: 原子能出版社, 1995: 77)

[3] Wen Y Q. Ultra–Fine Grained Steels–Microstructural Refinement Theory and Controlled Technology of Steels. Beijing: Metallurgical Industry Press, 2003: 7

(翁宇庆. 超细晶钢-钢的组织细化理论与控制技术. 北京: 冶金工业出版社, 2003: 7)

[4] Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1

[5] Wen D C. Mater Trans, 2006; 47: 2779

[6] Song R, Ponge D, Raabe D. Acta Mater, 2005; 53: 4881

[7] Calcagnotto M, Ponge D, Raabe D. Mater Sci Eng, 2010; A527: 7832

[8] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103

[9] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257

(吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)

[10] Yang G, Yang M X, Liu Z D, Wang C. J Iron Steel Res Inter, 2011; 18: 40

[11] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351

[12] Wang Y M, Chen M W, Zhou F H, Ma E. Nature, 2002; 419: 912

[13] Wang Y M, Ma E, Chen M W. Appl Phys Lett, 2001; 80:2395

[14] Ma E. JOM, 2006; 58: 49

[15] Yang G, Huang C X, Wang C, Zhang L Y, Hu C, Zhang Z F, Wu S D. Mater Sci Eng, 2009; A515: 199

[16] Wang J T, Xu C, Du Z Z, Qu G Z, Langdon T G. Mater Sci Eng, 2005; A410: 312

[17] Yang M X, Yang G, Liu Z D, Wang C, Hu C, Huang C X. Acta Metall Sin, 2012; 48: 164

(杨沐鑫, 杨钢, 刘正东, 王昌, 胡超, 黄崇湘. 金属学报, 2012; 48: 164)

[18] JIS G. Cold–Rolled Stainless Steel Plate and Steel Belt Technical Standards. Tokyo: JSA, 2005: 20

[19] Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949

[20] William D, Callister Jr. Fundamentals of Materials Science and Engineering. 5th ed. New York: John Wiley &Sons Inc, 2001:185

[21] Fang D R, Duan Q Q, Huang C X, Wu S D, Zhang Z F, Li J J, Zhao N Q. Acta Metall Sin, 2007; 43: 1251

(房大然, 段启强, 黄崇湘, 吴世丁, 张哲峰, 李家俊, 赵乃勤. 金属学报, 2007; 43: 1251)

[22] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655

[23] ASTM E 112–96. Standard Test Methods for Determining Average Grain Size. West Conshohocken: ASTM International, 2004: 10

[24] Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F. Mater Sci Eng, 2008; A485: 643

[25] Huang C X, Yang G, Wang C, Zhang Z F, Wu S D. Metall Mater Trans, 2011; 42 A: 2061

[26] Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492

[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[6] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[7] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[8] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[9] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[10] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[11] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[12] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[13] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[14] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[15] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.