Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1167-1173    
  论文 本期目录 | 过刊浏览 |
AZ31镁合金连续强流变轧制成形过程温度场模拟与优化
管仁国, 张秋生, 戴春光, 赵占勇, 刘春明
东北大学材料与冶金学院, 沈阳 110819
SIMULATION AND OPTIMIZATION OF THERMAL FIELD DURING CONTINUOUS CONSTRAINED RHEO-ROLLING OF AZ31 ALLOY
GUAN Renguo, ZHANG Qiusheng, DAI Chunguang, ZHAO Zhanyong, LIU Chunming
College of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

管仁国 张秋生 戴春光 赵占勇 刘春明. AZ31镁合金连续强流变轧制成形过程温度场模拟与优化[J]. 金属学报, 2011, 47(9): 1167-1173.
, , , , . SIMULATION AND OPTIMIZATION OF THERMAL FIELD DURING CONTINUOUS CONSTRAINED RHEO-ROLLING OF AZ31 ALLOY[J]. Acta Metall Sin, 2011, 47(9): 1167-1173.

全文: PDF(2014 KB)  
摘要: 采用数值模拟与实验相结合,对AZ31镁合金连续强流变轧制成形过程温度场进行了模拟与优化.结果表明,在倾斜板表面,合金温度从浇注口到出口逐渐趋于线性降低;在横断面上,接触倾斜板一侧合金温度比上侧低,当浇注温度大于690℃时,熔体在倾斜板出口温度高于AZ31合金液相线温度,容易发生制品断裂.在轧制变形区后滑区,主要发生半固态金属变形,合金从孔型入口到出口温度逐渐降低,半固态区间随着浇注温度的升高而增长,温度等值线发生两次弯曲,表层合金温度等值线向孔型出口凸出,而中心合金温度等值线向孔型入口凸出,其弯曲程度从中性面到孔型入口越来越明显;在轧制变形区的前滑区,主要发生固态金属的变形,温度等值线发生一次弯曲,且向孔型出口凸出.在本实验条件下,较合理的浇注温度范围在670~690℃之间.
Abstract:Semisolid metal processing (SSP) is recognized as a new near-shape forming technology, which combines the merits of both the liquid and the solid metal processing. Compared with the traditional rolling process, this technology has the features of low energy consumption, low cost equipment and high yield. Perhaps inevitably, a problem is the solid and liquid phases tend to separate with each other during rheo-rolling process, especially when the semisolid slurry has a low solid fraction. This problem causes macrosegregation and reduces the quality of the strip. Using rectangular groove roller may solve this problem. In this paper, numerical simulation method and experiment were combined for simulation and optimization of thermal field during continuous constrained rheo-rolling of AZ31 alloy. The results show that on the sloping plate surface, alloy temperature decreases gradually from the casting mouth to the exit with a linear pattern, the alloy temperature near the sloping plate surface is lower than that on the above surface, when the casting temperature is higher than 690℃, the melt temperature at the exit of the plate is higher than the liquidus of AZ31 alloy, which will cause product fracture. In the backward slip zone, semisolid metal deformation mainly happens, alloy temperature decreases gradually from the entrance to the exit of the roll gap, semisolid zone length increases with the casting temperature, isothermal lines have twice buckling, the buckling direction on the surface of the alloy is toward the exit of the roll gap, while the buckling direction in the center is toward the entrance of the roll gap, and their bending degree increases gradually from neutral flow plane to the entrance of the roll gap. In the forward slip zone, solid metal deformation mainly takes place, isothermal lines have once buckling, and the buckling direction is toward the exit of the gap. Under the current experimental conditions, the proper casting temperature between 670 and 690℃ is suggested.
Key wordsAZ31 Mg-alloy    semisolid    constrained rheo-rolling    numerical simulation    temperature
收稿日期: 2011-04-27     
基金资助:

国家自然科学基金项目50974038和51034002及国家重点基础研究发展计划项目2011CB610405资助

作者简介: 管仁国, 男, 1975年生, 教授
[1] Guan R G. Theory and Technology of Metallic Semisolid Forming. Beijing: Metallurgical Industry Press, 2005: 11

(管仁国. 金属半固态成形理论与技术. 北京: 冶金工业出版社, 2005: 11)

[2] Flemings M C. Metall Trans, 1991; 22: 957

[3] Xie F G, Guan R G, Li J P, Liu X H. J Northeastern Univ (Nat Sci), 2009; 30: 377

(谢丰广, 管仁国, 李江平, 刘相华. 东北大学学报(自然科学版), 2009; 30: 377)

[4] Huang H Q, Cao F R, Guan R G, Zhao Z Y, Xing Z H. Acta Metall Sin, 2011; 47: 291

(黄红乾, 曹富荣, 管仁国, 赵占勇, 邢振环. 金属学报, 2011; 47: 291)

[5] Zhang Y, Xu J H, Xie S S, Ma Q. Hot Work Technol, 2010; 39: 55

(张 莹, 徐金华, 谢水生, 马 强. 热加工工艺, 2010; 39: 55)

[6] Hu Y, He B L, Yan H. Chin J Nonferrous Met, 2010; 20: 1260

(胡勇, 何柏林, 闫洪. 中国有色金属学报, 2010; 20: 1260)

[7] Kund N K, Dutta P. Trans Nonferrous Met Soc China, 2010; 20(suppl.3): 898

[8] Koeune R, Ponthot J P. J Comput Appl Math, 2010; 234: 2287

[9] Kim H H, Kang C G. Trans Nonferrous Met Soc China, 2010; 20: 1799

[10] Chen X Y, Zhang L G. Foundry, 2000; 49: 106

(陈晓阳, 张连根. 铸造, 2000; 49: 106)

[11] Zhang J X, Zhang K, Liu G J, Xu J, Shi L K. Chin J Nonferrous Met, 2000; 10: 511

(张景新, 张 奎, 刘国钧, 徐骏, 石力开. 中国有色金属学报, 2000; 10: 511)

[12] Xie S S, Yang H Q, Huang G J, Li L. J Plast Eng, 2007; 14: 80

(谢水生, 杨浩强, 黄国杰, 李 雷. 塑性工程学报, 2007; 14: 80)

[13] Haga T, Takahashi K, Ikawa M, Watari H. J Mater Process Technol, 2003; 140: 610

[14] DuanWY, GuoWD, Li Y F. Fluid Mechanics. Shenyang: Northeastern University Press, 2001: 132

(段文义, 郭文东, 李亚峰. 流体力学. 沈阳: 东北大学出版社, 2001: 132)

[15] Zhou J X, Liu R X, Chen L L, Lin H T. Foundry, 2001; 50: 404

(周建兴, 刘瑞祥, 陈立亮, 林汉同. 铸造, 2001; 50: 404)

[16] Scheil E. Z Metallk, 1942; 34: 70

[17] Luo S J, Cheng Y S, Shan W W. Rheology of Semi–Solid Metal. Beijing: National Defence Industry Press, 2011: 10

(罗守靖, 程远胜, 单巍巍. 半固态金属流变学. 北京: 国防工业出版社, 2011: 10)

[18] Chen W F. Chin J Theor Appl Mech, 1983; 1: 16

(陈文芳. 力学学报, 1983; 1: 16)
No related articles found!