Please wait a minute...
金属学报  1988, Vol. 24 Issue (3): 261-266    
  论文 本期目录 | 过刊浏览 |
Cr25Ti铁素体钢转动形核的动态再结晶机制
高飞;徐有容
大连铁道学院;副研究员;上海嘉定上海科学技术大学一系
MECHANISM OF DYNAMIC ROTATION RECRYSTALLIZATION IN Cr25Ti FERRITIC STAINLESS STEEL
GAO Fei;XU Yourong Dalian Institute of Railway; Shanghai University of Science and TechnologyShanghai University of Science and Technology; Jiading; Shanghai
引用本文:

高飞;徐有容. Cr25Ti铁素体钢转动形核的动态再结晶机制[J]. 金属学报, 1988, 24(3): 261-266.
, . MECHANISM OF DYNAMIC ROTATION RECRYSTALLIZATION IN Cr25Ti FERRITIC STAINLESS STEEL[J]. Acta Metall Sin, 1988, 24(3): 261-266.

全文: PDF(1970 KB)  
摘要: 在1100℃和应变速率5×10~(-2)s~(-1)条件下对Cr25Ti铁素体钢进行热变形模拟试验,有动态再结晶发生.在变形早期有少部分晶界形核,随后均匀形核.较强的动态回复促使形成大量完好亚晶,变形诱发亚晶转动和亚晶界合并形成新晶粒.观察到原晶粒中的亚晶不断倾转弯曲或扭转形成再结晶晶粒间的位向关系.这表明此合金动态再结晶的形核方式与某些矿物类似,主要以应变诱发亚晶逐渐转动而均匀形核.这种较大程度的不同时性形核,使动态再结晶的应力峰不明显.
关键词 铬钛铁素体不锈钢转动形核动态再结晶热变形    
Abstract:The hot deformation behaviour and microstructure change of a Cr25 Tiferritic stainless steel under compression at strain rate 5×10~(-2)s~(-1) and 1100℃ byusing formaster press have been studied. It is observed that in the early stage, theminor fine grains were found along the original grain boundaries, and under thefurther increasing strain, the intragranular nucleation became more predominate.The stronger dynamic recovery results in a lot of well-defined subgrains. The strainwill induce the subgrain rotation together with the subboundary coalescence andform new grains. An observation also revealed that lattice orientation betweendynamic recrystallization grains is formed from the progressing rotation in "tilt"or "torsion" of subgrain in the original grains. It seems that the dynamic recrys-tallization nucleation of Cr25Ti steel is similar to several minerals in that bothare nucleated homogeneously by the strain inducing progressing rotation of sub-grains. However, a high degree of "asynchronism" during dynamic recrystallizationcauses no obvious peak on the stress-strain plot.
Key wordsCrTi ferritic stainless steel    strain inducing subgrain rotation    dynamic recrystallization    hot deformation
收稿日期: 1988-03-18     
1 Hobbs B E. Tectonophysics, 1968; 6: 353
2 Poirier J P, Nicalas A. J Geol, 1975; 83: 707
3 Ion S E, Humphreys F J. White S H. Acta Metall, 1982; 30: 1909
4 Humphreys F J. In: Hansen N et al. eds, Deformation of Polycrystals, riso, Denmark: RISO National Laboratory, 1981: 305
5 徐有容,高飞.轧钢理论文集(第三集),北京:中国金属学会轧钢学会.1986:61
6 Jonas J J, Sakai J. In: Krauss G ed, Deformation Processing and Structure, Metals Park, Ohio: ASM, 1984: 185
7 McQueen H J. In: Krauss G ed. Deformation, Processing and Structure, Metals Park, Ohio: ASM, 1984: 231
8 Koul A K. Metall Trans, 1985: 16A: 51
9 McQueen H J. In: Gifxins R C ed. Strength of Metals and Alloys, Vol. 1, Oxford: Pergamon, 1982: 517
10 田村今男.钢铁,1985;20(1) :64
11 Roberts W. In: Krauss G ed. Deformation, Processing and Structure, Metals Park, Ohio: ASM, 1984: 109
12 McQueen H J, Jonas J J. In: Herman H ed. Treatise on Materials Science and Technology, Vol. 6, New York: Academic, 1975: 393
13 Glover G, Sellars C M. Metall Trans, 1973; 4: 765
14 Maki T, Okaguchi S, Tamura I. In: Gifxins R C ed. Strength of Metals and Alloys, Vol. 1. Oxford: Pergamon, 1982: 529
15 Tungatt P D, Humphreys F J. Acta Metall, 1984; 32: 1625
16 汪复兴.金属物理,机械工业出版社,1980:128
17 Schmidt C G, Young C M, Walser B, Klundt R H, Sherby O D. Metall Trans, 1982; 13A: 447
18 Schmid S M, Paterson M S, Boland J N. Tectonophysics, 1980; 65: 245
19 Sellars C M. Philos Trans R Soc London, 1978; 288A: 147
20 Bernshtein M L, Kaputkina L M, Prokoshkin S D, Dobatkin S V. Acta Metall, 1985; 33: 247t
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[11] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[14] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[15] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.