Please wait a minute...
金属学报  1988, Vol. 24 Issue (3): 221-228    
  论文 本期目录 | 过刊浏览 |
半有衬新型电渣重熔研究
陈崇禧;高荣富
北京钢铁学院高温合金教研室;北京钢铁学院
STUDY OF A NEW TYPE SEMI-LINING ELECTRO-SLAG REMELTING
CHEN Chongxi;GAO Rongfu Beijing University of Iron and Steel TechnologyDeft.of Superalloy;Beijing University of Iron and Steel Technology; Beijing
引用本文:

陈崇禧;高荣富. 半有衬新型电渣重熔研究[J]. 金属学报, 1988, 24(3): 221-228.
, . STUDY OF A NEW TYPE SEMI-LINING ELECTRO-SLAG REMELTING[J]. Acta Metall Sin, 1988, 24(3): 221-228.

全文: PDF(1525 KB)  
摘要: 本文创制渣池有衬节能、叠加直流电化学精炼、纵向结晶排夹杂三结合的优质节能新型电渣重熔炉.研究了叠加直流电流密度对合金成分和对去硫、去气的影响.实验结果表明,新型电渣单位电耗降低达41%;在无保护气氛下电渣重熔,GH49,GH37合金中活泼元素成分可不烧损;可有效地降低合金中O,N,S含量达到10ppm;电渣锭轴向结晶,组织致密,二次枝晶轴间距比通常电渣锭缩短近1/3,显著改善合金偏析.
关键词 半有衬电渣炉电渣重熔    
Abstract:A new type of electroslag refining technique has been proposed andthe influence of superimposed DC density on the contents of active metal elementsas well as on the desulphurization and degassing have been studied. The resultsshow that the enerey consumption may be reduced by 41% by using this technique.During the semi-lining ESR under normal atmosphere, there is no evident loss ofactive metal elements, while the contents of O, N and S can be effectively reducedto 10ppm in superalloys GH49 and GH37. The ingot solidified along its axis andhas a compact microstructure. The secondary dendrite arm spacing of the semiliningESR ingot is about 1/3 shorter than that of tbe general ESR ingot.
Key wordssemi-lining electroslag furnace    electroslag remelting
收稿日期: 1988-03-18     
1 Elienne M, Mitchell A. Oxidation Losses of Low Levels of titanium During Electroslag Remelting, In: Bhat G K ed. Proc of the Second Int Symp on Electroslag Remelting Technology, Part II, Pittsburgh: Mellon Institute, 1969
2 Knights C F, Perkins R. Electroslag Refining, In: Proc of a Conf on Electroslag Refining, London: Iron and Steel Institute, 1973: 35
3 Gill L L, Harris K. Electroslag Refining, In: Proc of a Conf on Electroslag Refining, London: Iron and Steel Institute. 1973: 89
4 陈崇禧,王涌,傅杰,陈恩普.金属学报,1981;17:50
5 陈崇禧,高荣富,赵文祥.金属学报,1984;20:B137
6 Luchok J, Roberts R J. In: Proc of the 4th Int Symp on Electroslag Remelting Processes, Tokyo: The Iron and Steel Institute of Japan, 1973: 149
7 Holzgruber W. In: Bhat G K, Simkovich A eds. Proc of the 5th Int Symp on Electroslag and Other Special Melting Technologies, Pittsburgh: Carnegie-Meooln Institute, 1974: 70
8 Sullivan C P, Giamei A F, Versnyder F L. In: Bhat G K. Simkovich A eds. Proc of the 5th Int Symp on Electroslag and Other Special Melting Technologies. Pittsburgh: Carnegie-Mellon Institute. 1974: 525
9 #12
10 Holzgruber W, Machner P. Ploeckinger E, Boehler G. In: Foster E L ed. Transaction Vacuum Metallurgy Conf 1969, New York: American Vacuum Society, 1969: 415
11 Cordy J T, Kelley S L, Lherbier L W. In: Bhat G K, Lherbier L W eds. Proc Vacuum Metallutgy Conf 1984, Pittsburgh: Iron and Steel Society, 1984: 69
12 Boehler G, GB Pat 1230183, 1971
[1] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[2] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[3] 倪自飞 孙扬善 薛烽 白晶. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究[J]. 金属学报, 2010, 46(8): 935-940.
[4] 王芳 李宝宽 . 电渣重熔过程中的电磁场和Joule热分析[J]. 金属学报, 2010, 46(7): 794-799.
[5] 李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
[6] 吴钱林; 孙扬善; 薛烽; 周健 . 电渣重熔对TiC强化2Cr13不锈钢力学性能和断口的影响[J]. 金属学报, 2008, 44(6): 745-750 .
[7] 储少军;刘海洪;张合义. 灰铸铁电渣重熔过程石墨球化现象的研究[J]. 金属学报, 1998, 34(9): 971-976.
[8] 魏季和;任永莉. 电渣重熔体系内磁场的数学模拟[J]. 金属学报, 1995, 31(14): 51-60.
[9] 魏季和;任永莉. 电渣重熔体系内熔渣流场的数学模拟[J]. 金属学报, 1994, 30(23): 481-490.
[10] 魏季和;刘宗远. 电渣重熔用CaF_2+Al_2O_3和CaF_2+Al_2O_3+CaO系熔渣传氧的研究[J]. 金属学报, 1994, 30(20): 350-360.