Please wait a minute...
金属学报  1964, Vol. 7 Issue (3): 263-280    
  论文 本期目录 | 过刊浏览 |
流态化冶金中的稀相传递过程 第一部分 传递系数及系统压降作为选择稀相工艺过程的依据
郭慕孙;戴殿卫
中国科学院化工冶金研究所;中国科学院化工冶金研究所
TRANSPORT PROCESSES IN DILUTE-PHASE FLUIDIZATION AS APPLIED TO CHEMICAL METALLURGY Ⅰ. TRANSFER COEFFICIENT AND SYSTEM PRESSURE DROP AS CRITERIA FOR SELECTING DILUTE-PHASE OPERATIONS
MOOSON KWAUK; DIEN-WEI TAI(Institute of Chemical Metallurgy; Academia Sinica)
引用本文:

郭慕孙;戴殿卫. 流态化冶金中的稀相传递过程 第一部分 传递系数及系统压降作为选择稀相工艺过程的依据[J]. 金属学报, 1964, 7(3): 263-280.
, . TRANSPORT PROCESSES IN DILUTE-PHASE FLUIDIZATION AS APPLIED TO CHEMICAL METALLURGY Ⅰ. TRANSFER COEFFICIENT AND SYSTEM PRESSURE DROP AS CRITERIA FOR SELECTING DILUTE-PHASE OPERATIONS[J]. Acta Metall Sin, 1964, 7(3): 263-280.

全文: PDF(1389 KB)  
摘要: 在流态化冶金中許多过程包含顆粒內部和顆粒与其周围流体之間的传热和传貭,本文提出了一个混合对比阻力R′(对于传热和传貭分別为R′=Nu′=hD_P/k_s,R′=Sh′=h_DD_P/D_s),通过图2的曲綫来近似地計算顆粒內部传递过程占总传递过程阻力的分数,从而可以确定哪些过程可以有效地通过稀相技术来加速。 稀相技术在提高颗粒—流体界面传递速度的显著效果有賴于稀相流态化中顆粒—流体的流动特点。本文分析了固定床、单顆粒和浓相、稀相流态化床中颗粒与流体的运动,并指出顆粒—流体间的传递系数可以分为局部的真值和系統的表观值两种,对浓相流态化床而言,后者可低于前者2—3个数量級。此巨大差别主要是由于顆粒羣的、流体的返混以及流速分布的非齐次性所致。根据分析和实驗数据,稀相操作是减少返混和降低流速分布非齐次性的有效措施,从而可以提高表观传递系数,使其接近于(甚至超过)单顆粒的理想数值。从系統压降的分析,稀相流态化的能量消耗亦将远远低于固定床和浓相流态化。
Abstract:In the application of fluidization to chemical metallurgy, many processes involve the transport of heat and mass both inside a particle and between the particle and the surrounding fluid. The term, mixed specific resistance, R′(R′=Nu′=hD_p/k_s and R′=Sh′=h_DD_P/D_s for heat and mass transfer, respectively), is proposed, through which, by means of the curve shown in Figure 2, it is possible to estimate the fraction of total resistance due to transfer inside the particle, thus permitting one to ascertain whether or not a given transport process can be effectively hastened by dilute-phase technique.The effectiveness of dilute-phase technique in accelerating transport processes is primarily due to the unique characteristics of its particle-fluid dynamics. After an analysis on the fixed bed, a single particle in a fluid, and the dense—and dilute—phase fluidized systems, the present paper points out that a differentiation should be made between the local transfer coefficient and an apparent value based on the entire system. For densephase fluidization with gases, for example, the latter may be lower than the former by 2—3 orders of magnitude. This tremendous disparity is mainly caused by the back-mixing of both the particles as a group and of the fluid, as well as by the heterogeneous nonuniformity characteristic of may a particle-fluid system. Based on the present analysis, which is duly supported by experimental evidence, it is shown that dilute-phase technique can be used effectively to reduce back-mixing and to suppress the heterogeneous nature in nonuniform velocity fronts, thus raising the values of apparent transfer coefficients to the range of the local coefficients of the idealized single particle model. From the point of view of system pressure drop, too, dilute-phase fluidization represents much lower power consumption than the corresponding fixed bed or dense-phase operation.
收稿日期: 1964-03-18     
[1] 王中礼:流态化技术中多孔板的初步研究,(中国科学院化工冶金研究所,1962年),8月11日.
[2] 王佩云:载流磁化焙烧小型实驗报告,(中国科学院化工冶金研究所,1961年),6月.
[3] 刘淑娟:从含銅鈷氧化铁矿中提取銅鈷,(中国科学院化工冶金研究所,1962年),6月.
[4] 沈德浩、原庆久:鉄矿石磁化还原沸騰焙烧工业試驗生产介紹,(鞍山黑色矿山設計院首届学术年会資料,1962年),11月.
[5] 郑建生、白万海:流态化磁化焙烧貧铁矿,(中国科学院化工冶金研究所,1962年),6月.
[6] 楊云奇:稀相布料,(中国科学院化工冶金研究所,1962年),7月6日.
[7] 郭慕孙:对于分布板的一些初步意見,(中国科学院化工冶金研究所,1959年),10月.
[8] 郭慕孙:对于稀相換热的一些初步意見,(中国科学院化工冶金研究所,1959年),11月12日.
[9] 郭慕孙:流态化讲解,(北京市化学化工学会讲座,1962年),11月27日,30日.
[10] 郭慕孙、庆一安:流态化--垂直系統中均匀球体和流体的运动,(科学出版社,1963年).
[11] 郭慕孙、杨紀珂:載流式过程(一些初步意見),(中国科学院化工冶金研究所,1961年)1月5日.
[12] 陶恩瑞、刘錫洹、姚忠吉:有色金属,1959,(3) ,10.
[13] 戴殿卫:稀相換热,(中国科学院化工冶金研究所,1962年),7月.
[14] 戴殿卫:稀相換热实驗,(中国科学院化工冶金研究所,1959年),9月21日.
[15] #12
[16] #12
[17] #12
[18] Bullard, Sir E.: Proc. Roy. Soc. (London), 1954, A222, 408.
[19] Cairns, E. J., Prausnitz, J. M.: A. I. Ch. E. J., 1960, 6, 400.
[20] Cavanagh, R. L., Last, A. J.: Can. Mining Met. Bull., 1961, 54, 615.
[21] Dalla Lana, I. G., Amundson, N. R.: Ind. Eng. Chem., 1961, 53, 22.
[22] Danckwerts, P. V.: Chem. Eng. Sci., 1953, 2, 1.
[23] Hanratty, T. J., Latinen, G., Wilhelm, R. H.: A. I. Ch. E. J., 1956, 2, 372.
[24] Harrison, D., Davidson, J. F., De Kock, J. W.: Trans. Inst. Chem. Engr., 1961, 39, 202.
[25] Heertjes, P. M., De Boer, H. G. J.: Chem. Eng. Sci., 1953, 2, 97.
[26] Kays, W. M., London, A. L.: Compact Heat Exchangers, (The National Press, 1955) , p. 25.
[27] Kettenring, K. N., Manderfield, E. L., Smith, J. M.: Chem. Eng. Progr., 1950, 46, 139.
[28] Kramers, H.: Physica, 1946, 12, 61.
[29] Kwauk, M.: A Note on Non-uniformity in Fluid-particle Systems, 未发表.
[30] Lanneau, K. P.: Trans. Inst. Chem. Engr., 1960, 38, 125.
[31] Lloyd, W. A., Amundson, N. R.: Ind. Eng. Chem., 1961, 53, 19.
[32] McCune, L. K., Wilhelm, R. H.: Ind. Eng. Chem., 1949, 41, 1124.
[33] Newman, A. B.: A. I. Ch. E. J., 1931, 27, 203.
[34] OEEC: The Mining and Dressing of Low-grade Ores, 1955, p. 91.
[35] Olsen, F. C. W., Schultz, O. T.: Ind. Eng. Chem., 1942, 34, 874.
[36] Priestley, R. J.: Ind. Eng. Chem., 1957, 49, 62.
[37] Priestly, R. J.: Blast Furnace Steel Plant, 1958. 46, 303.
[38] Richardson, J. F., Ayers, P.: Trans. Inst. Chem. Engr., 1959, 37, 314.
[39] Richardson, J. F., Bakhtiar, A. G.: Trans. Inst. Chem. Engr., 1958, 36, 283.
[40] Richardson, J. F., Szekely, J.: Trans. Inst. Chem. Engr., 1961, 39, 212.
[41] Sunkoori, N. R., Kaparthi, R.: Chem. Eng. Sci., 1960, 12, 166.
[42] Totzek, F.: Chem. Engr. Progr., 1954, 50, 182.
[43] Themelis, N. J., Gauvin, W. H.: A. I. Ch. E. J., 1962, 8, 437.
[44] Walton, J. S., Olson, R. L.: Ind. Eng. Chem., 1952, 44, 1474.
[45] Wamsley, W. W., Johanson, L. N.: Chem. Eng. Progr., 1954, 50, 347.
[46] Wehner, J. F., Wilhelm, R. H.: Chem. Eng. Sci., 1956, 6, 89.
No related articles found!