Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 744-752    DOI: 10.3724/SP.J.1037.2014.00040
  本期目录 | 过刊浏览 |
Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*
孙文1,2, 秦学智2, 郭永安2, 郭建亭2, 楼琅洪2, 周兰章2
1 中国科学技术大学, 合肥 230022
2 中国科学院金属研究所, 沈阳 110016
EFFECTS OF Nb/Ti RATIOS ON THE MICROSTRUCTURAL EVOLUTIONS OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE
SUN Wen1,2, QIN Xuezhi2, GUO Yongan2, GUO Jianting2, LOU Langhong2, ZHOU Lanzhang2
1 University of Science and Technology of China, Hefei 230022
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.
Wen SUN, Xuezhi QIN, Yongan GUO, Jianting GUO, Langhong LOU, Lanzhang ZHOU. EFFECTS OF Nb/Ti RATIOS ON THE MICROSTRUCTURAL EVOLUTIONS OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE[J]. Acta Metall Sin, 2014, 50(6): 744-752.

全文: PDF(11214 KB)   HTML
摘要: 

采用OM, SEM和TEM等手段, 分析了Nb/Ti 比对铸造镍基高温合金长期时效微观组织演化的影响. 结果表明, 在长期时效期间, Nb/Ti 比对γ'相形貌演化和粗化影响不大, 但对γ'相体积分数有一定影响. 初生MC中Nb/Ti 比和(Nb+Ti)/(W+Mo) 比与合金Nb/Ti 比具有很好的线性关系. 随合金Nb/Ti 比下降, 2 个比值线性下降, 使MC分解程度提高, 热稳定性降低; 但是, 2 个比值的显著改变并不能导致MC分解程度的大幅变化, 还存在其它因素对MC热稳定性具有重要影响. MC的分解程度可通过分解前后体积分数的变化来计算, 而热稳定性强弱则可由分解程度来定量表达. Nb/Ti 比降低, 晶界粗化更加严重, 晶界析出M23C6的倾向增大, 析出M6C的倾向减小. 但是, 合金中μ相的析出演化行为并未受到Nb/Ti 比的明显影响.

关键词 铸造镍基高温合金Nb/Ti比长期时效组织演化    
Abstract

Effects of Nb/Ti ratios on the microstructural evolutions of cast Ni-based suerpalloys during long-term thermal exposure are investigated by OM, SEM and TEM. The results show that Nb/Ti ratios have no influence on the evolution of γ? morphology and size during long-term thermal exposure. However, with decrease of Nb/Ti ratios in alloys, the volume fraction of γ? phase increases. Both parameters Nb/Ti and (Nb+Ti)/(W+Mo) of primary MC have a good linear relationship with Nb/Ti ratios in alloys. With decrease of Nb/Ti ratios in alloys, both parameters for primary MC linearly decrease and sequentially thermal stability of primary MC is weakened. However, the results also show that Nb/Ti and (Nb+Ti)/(W+Mo) ratios of primary MC are not the principle factors determining the thermal stability of primary MC. The degeneration degree of primary MC can be calculated by the volume fraction of primary MC before and after degeneration, while the thermal stability of primary MC can be quantitatively characterized by degeneration degree of primary MC. Furthermore, with decreased Nb/Ti ratios in alloys, the grain boundaries coarsen more severely during long-term thermal exposure. Meanwhile, precipitation tendency of M23C6 carbide on grain boundaries increases and that of M6C carbide on grain boundaries decreases. However, the precipitation and evolution of μ phase during long-term thermal exposure is not affected by Nb/Ti ratios obviously.

Key wordscast Ni-based superalloy    Nb/Ti ratio    long-term exposure    microstructural evolution
收稿日期: 2014-01-17     
ZTFLH:  TA211.8  
基金资助:* 国家自然科学基金青年科学基金资助项目51001101
作者简介: null

孙 文, 男, 1986年生, 博士生

Fraction Sample C Cr Al Ti Nb W Mo Fe Ni Nb+Ti Nb/Ti Al+Ti+Nb W+Mo Mo/
(W+Mo)
%
Mass A0 0.09 15.83 1.66 2.48 1.14 4.89 3.52 14.80 Bal. 3.62 0.46 - 8.41 0.42
A2 0.09 15.23 1.80 3.03 0.62 4.95 3.61 14.90 Bal. 3.65 0.20 - 8.56 0.42
A4 0.10 15.39 1.82 3.49 0.10 4.94 3.58 14.80 Bal. 3.59 0.03 - 8.52 0.42
Atomic A0 0.44 17.83 3.60 3.03 0.72 1.56 2.15 15.48 Bal. - - 7.35 - -
A2 0.43 17.10 3.89 3.67 0.39 1.57 2.20 15.53 Bal. - - 7.95 - -
A4 0.48 17.22 3.92 4.23 0.06 1.56 2.17 15.37 Bal. - - 8.21 - -
表1  实验合金成分
图1  合金试样 (A0) 的典型热处理态组织
图2  3个试样中γ?相在时效不同时间后的SEM像
图3  γ?相尺寸和体积分数随时效时间的变化
图4  MC中Nb/Ti和(Ti+Nb)/(W+Mo)比与合金Nb/Ti比的关系
Sample Nb Ti Mo W Cr Ni Nb/Ti Nb+Ti (Nb+Ti)/(W+Mo)
A0 41.0 29.3 9.0 16.0 1.6 3.1 1.4 70.3 2.8
A2 23.9 37.6 11.1 23.5 1.3 2.6 0.6 61.5 1.8
A4 4.7 43.0 13.6 31.1 2.6 5.0 0.1 47.7 1.1
表2  热处理后初生MC的化学成分
图5  时效不同时间后3个试样中MC分解的SEM像
图6  MC分解程度D随时效时间t的变化曲线
图7  晶界在时效不同时间后的SEM像
图8  试样A4中μ相在时效不同时间后的SEM像
图9  μ相的体积分数随时效时间的变化
[1] Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, NY: Wiley, 1987: 97
[2] Pollock T M. Mater Sci Eng, 1999; B32: 255
[3] Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[4] Rae C M F, Karunaratne M S A, Small C J, Broomfiels C N, Jones C N, Reed R C. Superalloys. Warrendale: TMS, 2000: 767
[5] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[6] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[7] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[8] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[9] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[10] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[11] Choi B G, Kim I S, Kim D H, Jo C Y. Mater Sci Eng, 2008; A478: 329
[12] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[13] Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A553: 14
[14] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Acta Metall Sin, 2010; 46: 213
[14] (秦学智, 郭建亭, 袁超, 候介山, 周兰章, 叶恒强. 金属学报, 2010; 46: 213)
[15] Ricks R, Porter A, Ecob R. Acta Metall, 1983; 31: 43
[16] Gomez-Acebo T, Navarcorena B, Castro F. J Phase Equilibria, 2004; 25: 237
[17] Japan Institute of Metals. Kinzoku Data Book. Tokyo: Maruzen, 1974: 24
[18] ISIJ. Iron and Steel Handbook, Vol.I Fundamental. 3rd Ed, Tokyo: Maruzen, 1981: 350
[19] Guo J T. Materials Science and Engineering for Superalloys, Vol.1. Beijing: Science Press, 2008: 126
[19] (郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 126)
[20] Jo T S, Kim S H, Kim D G, Park J Y, Kim Y D. Metall Mater Int, 2008; 14: 739
[21] Mohammad A G, Mohsen M. Mater Des, 2011; 32: 2695
[22] Cai Y L, Zheng Y R. Acta Metall Sin, 1982; 18: 30
[22] (蔡榆林, 郑运荣. 金属学报, 1983; 18: 30)
[23] Pessah-Simonetti M, Caron P, Khan T. Superalloys. Warrendale: TMS, 1992: 567
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[4] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[5] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[6] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[7] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[8] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[9] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[10] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[11] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[12] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[13] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[14] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[15] 刘锦溪,张继祥,陆燕玲,李肖科,李志军,周兴泰. 长期时效对C276合金组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 763-768.