Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 845-853    DOI: 10.3724/SP.J.1037.2013.00786
  本期目录 | 过刊浏览 |
Ni对Co-Al-W基合金时效组织演变和γ′相溶解行为的影响*
薛飞1, 米涛1, 王美玲2, 丁贤飞2, 李相辉3, 冯强1,2()
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 北京科技大学国家材料服役安全科学中心, 北京 100083
3 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
EFFECTS OF Ni ON MICROSTRUCTURAL EVOLUTION AND γ′ DISSOLUTION OF NOVEL Co-Al-W BASE ALLOYS
XUE Fei1, MI Tao1, WANG Meiling2, DING Xianfei2, LI Xianghui3, FENG Qiang1,2()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

薛飞, 米涛, 王美玲, 丁贤飞, 李相辉, 冯强. Ni对Co-Al-W基合金时效组织演变和γ′相溶解行为的影响*[J]. 金属学报, 2014, 50(7): 845-853.
Fei XUE, Tao MI, Meiling WANG, Xianfei DING, Xianghui LI, Qiang FENG. EFFECTS OF Ni ON MICROSTRUCTURAL EVOLUTION AND γ′ DISSOLUTION OF NOVEL Co-Al-W BASE ALLOYS[J]. Acta Metall Sin, 2014, 50(7): 845-853.

全文: PDF(9834 KB)   HTML
摘要: 

以4种不同Ni含量(15%~45%, 原子分数)的新型γ′相强化Co-Al-W基合金为研究对象, 通过时效与高温热处理显微组织分析以及显微硬度测试, 研究了Ni对相转变温度、g /γ′两相组织演变、γ′相高温溶解行为和显微硬度的影响. 结果表明: 随着Ni含量的增加, γ′相溶解温度升高, 固相线温度未发生明显变化. 4种合金经900 ℃, 50 h热处理后, 基体均为γ/γ′两相组织; 随着Ni含量的增加, γ′相形貌由立方形逐渐向近似球形转变, γ′相体积分数不断降低. 经300 h长时间热处理后, 合金的γ′相形貌没有明显改变, γ′相体积分数出现不同程度的降低. 对900 ℃, 300 h热处理的合金进行970~1060 ℃高温处理后, γ′相体积分数随着热处理温度的升高而逐渐减少, 并最终全部溶解而消失; 低Ni含量(15%和25%)合金和高Ni含量(35%和45%)合金的γ′相形貌分别转变为球形和立方形. 900 ℃, 50 h和300 h显微硬度测试结果表明: 随着Ni含量的增加, 合金的硬度降低; 热处理时间的延长使合金的硬度小幅增加.

关键词 Co-Al-W基合金Ni显微组织显微硬度    
Abstract

The influences of Ni on the phase transformation temperatures, γ /γ′ two-phase microstructural evolution, γ′ dissolution behavior and microhardness have been investigated in four Co-Al-W base alloys containing various Ni contents (15%~45%, atomic fraction). The results show that the γ′ solvus temperatures continuously increase and the solidus temperatures are nearly unchanged with increasing the Ni content. The γ/γ′ two-phase microstructure is generated in four experimental alloys after the heat treatment at 900 ℃ for 50 h, whereas the γ′ morphology changes from cuboidal to nearly spherical and the γ′ volume fraction reduces as the Ni content increases. When prolonged heat treatment at 900 ℃ for 300 h is employed, no significant change in the γ′ morphology is observed in four experimental alloys but the γ′ volume fraction decreases to different degree as a function of Ni concentration. High temperature treatments at 970~1060 ℃ are conducted after experimental alloys are heat treated at 900 ℃ for 300 h. In the high temperature range, the dissolution of the γ′ phase is more pronounced as the temperature elevates, whilst the γ′ morphology becomes spherical and cuboidal in alloys containing the low and high levels of Ni, respectively. The microhardness results of the experimental alloys after heat treatment at 900 ℃ for 50 h and 300 h indicate that the microhardness is lowered in alloys with higher Ni content, but it increases as the heat treatment time is prolonged.

Key wordsCo-Al-W base alloy    Ni    microstructure    microhardness
收稿日期: 2014-12-03     
ZTFLH:  TG146.1  
基金资助:* 国家自然科学基金项目50771012和51301014, 航空科学基金项目2009ZF74011及教育部新世纪优秀人才支持计划项目NCET-06-0079资助
作者简介: null

薛飞, 男, 1984年生, 博士生 DOI:

Alloy Al W Ni Co
15Ni 9 10 15 Bal.
25Ni 9 10 25 Bal.
35Ni 9 10 35 Bal.
45Ni 9 10 45 Bal.
表1  Co-Al-W基合金的名义成分
图1  Co-Al-W基合金经900 ℃, 50 h和300 h热处理后的典型显微组织
图2  Co-Al-W基合金经900 ℃, 50 h 和300 h 热处理, 以及再经970~1030 ℃, 4 h 热处理后的γ′相体积分数和尺寸
Condition Heat treatment
A1 1300 ℃, 24 h (A.C.) + 900 ℃, 50 h (W.Q.)
A2 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.)
B1 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 970 ℃, 4 h (W.Q.)
B2 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 1000 ℃, 4 h (W.Q.)
B3 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 1030 ℃, 4 h (W.Q.)
B4 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 1060 ℃, 4 h (W.Q.)
表2  实验用到的热处理制度
Alloy γ′ solvus temperature Solidus temperature
15Ni 1030 1460
25Ni 1037 1464
35Ni 1049 1464
45Ni 1079 1465
表3  Co-Al-W基合金的γ′相溶解温度和固相线温度
图3  Co-Al-W基合金经900 ℃, 300 h热处理再进行970~1030 ℃, 4 h热处理后的典型显微组织
图4  Co-Al-W基合金经900 ℃, 50 h和300 h热处理后的Vickers显微硬度
Alloy A1 A2 B1 B2 B3 B4
15Ni Cuboidal Cuboidal Spherical Spherical No γ No γ
25Ni Nearly cuboidal Nearly cuboidal Spherical Spherical No γ No γ
35Ni Nearly spherical Nearly spherical Spherical Nearly cuboidal Nearly cuboidal No γ
45Ni Spherical Spherical Spherical Nearly cuboidal Cuboidal No γ
表4  Co-Al-W基合金经900 ℃, 50 h 和300 h 热处理, 以及再经970~1030 ℃, 4 h 热处理后的γ′相形貌
[1] Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: John Wiley & Sons, 1987: 135
[2] Blaise J M, Viatour P, Drapier J M. Cobalt, 1970; 49: 192
[3] Drapier J M, Coutsouradis D. Cobalt, 1968; 39: 63
[4] Sato J, Omori T, Oikawa K, Ohnuma I, Karinuma R, Ishida K. Science, 2006; 312(5770): 90
[5] Titus M S, Suzuki A, Pollock T M. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 823
[6] Titus M S, Suzuki A, Pollock T M. Scr Mater, 2012; 66: 574
[7] Bauer A, Neumeier S, Pyczak F, Singer R F, Göken M. Mater Sci Eng, 2012; A550: 333
[8] Xue F, Wang M L, Feng Q. Mater Sci Forum, 2011; 686: 388
[9] Xue F, Wang M, Feng Q. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 813
[10] Bauer A, Neumeier S, Pyczak F, Göken M. Scr Mater, 2010; 63: 1197
[11] Suzuki A, Pollock T M. Acta Mater, 2008; 56: 1288
[12] Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Mater Trans, 2008; 49: 1474
[13] Xue F, Zhou H J, Ding X F, Wang M L, Feng Q. Mater Lett, 2013; 112: 215
[14] Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183
[15] Grosdidier T, Hazotte A, Simon A. Scr Metall Mater, 1994; 30: 1257
[16] Cormier J, Jouiad M, Hamon F, Villechaise P, Milhet X. Philos Mag Lett, 2010; 90: 611
[17] Omori T, Oikawa K, Sato J, Ohnuma I, Kattner U R, Kainuma R, Ishida K. Intermetallics, 2013; 32: 274
[18] Xue F, Li Z Q, Feng Q. Mater Sci Forum, 2010; 654-656: 420
[19] Li X H, Gan B, Feng Q, Sun Z Q, Chen G L, Zhang G Q, Cao L M. J Univ Sci Technol Beijing, 2008; 30: 1369
[19] (李相辉, 甘 斌, 冯 强, 孙祖庆, 陈国良, 张国庆, 曹腊梅. 北京科技大学学报, 2008; 30: 1369)
[20] Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[21] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[22] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[23] Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Scr Mater, 2009; 61: 612
[24] Jarrett R N, Tien J K. Metall Trans, 1982; 13A: 1021
[25] Nathal M V, Ebert L J. Metall Trans, 1985; 16A: 1849
[26] Viatour P, Drapier J M, Coutsouradis D. Cobalt, 1973; 3: 67
[27] Chen M, Wang C Y. J Appl Phys, 2010; 107: 093705
[28] Sponseller D L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 259
[29] Jiang W H, Guan H F, Hu Z Q. J Aeron Mater, 2001; 21(1): 1
[29] (姜文辉, 管恒荣, 胡壮麒. 航空材料学报, 2001; 21(1): 1)
[30] The Editorial Board of China Aeroautical Materials Handbook. China Aeronautical Matrials Handbook. 2nd Ed., Vol.2, Beijing: Standards Press of China, 2002: 531
[30] (《中国航空材料手册》编辑委员会. 中国航空材料手册. 第2版, 第2卷, 北京: 中国标准出版社, 2002: 531)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[8] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[9] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[10] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[14] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[15] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.