Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 619-625    DOI: 10.3724/SP.J.1037.2013.00777
  本期目录 | 过刊浏览 |
Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*
吴铭方(), 匡泓锦, 王凤江, 林红香, 胥国祥
江苏科技大学先进焊接技术省级重点实验室, 镇江 212003
PARTIALLY TRANSIENT LIQUID PHASE-DIFFUSION BONDING ON Ti(C, N)-Al2O3 CERAMIC MATRIX COMPOSITES USING Zr/Cu/Zr AS INTERLAYER
WU Mingfang(), KUANG Hongjin, WANG Fengjiang, LIN Hongxiang, XU Guoxiang
Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
引用本文:

吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
Mingfang WU, Hongjin KUANG, Fengjiang WANG, Hongxiang LIN, Guoxiang XU. PARTIALLY TRANSIENT LIQUID PHASE-DIFFUSION BONDING ON Ti(C, N)-Al2O3 CERAMIC MATRIX COMPOSITES USING Zr/Cu/Zr AS INTERLAYER[J]. Acta Metall Sin, 2014, 50(5): 619-625.

全文: PDF(8002 KB)   HTML
摘要: 

采用Zr箔/Cu箔/Zr箔中间层对Ti(C, N)-Al2O3陶瓷基复合材料进行部分瞬间液相扩散连接实验, 研究保温时间对元素扩散及界面反应产物的影响, 探讨了制约接头室温强度的因素, 对比分析了在部分瞬间液相扩散连接过程中, 辅助脉冲电流对元素扩散及接头强度的作用机制. 结果表明, 预置Zr箔/Cu箔/Zr箔中间层通过部分瞬间液相扩散连接, 在加热温度950 ℃, 保温时间15~30 min条件下接头强度达到最大值. 保温时间过短, 活性元素Zr削弱基体强度, 保温时间过长, Zr与Cu在界面生成金属间化合物降低了接头的强度. 扩散焊过程中施加辅助脉冲电流能够有效缓解接头的残余应力, 防止裂纹在脆性基体材料中扩展; 但是同时促进了界面处的反应进程, 显著提高了界面处Cu-Zr金属间化合物的形成速度, 使得界面易成为接头的薄弱环节.

关键词 Ti(CN)-Al2O3部分瞬间液相扩散连接元素扩散接头强度辅助脉冲电流    
Abstract

The partially transient liquid phase-diffusion bonding (PTLP-DB) on Ti(C, N)-Al2O3 ceramic matrix composites (CMC) was studied using the Zr foil/Cu foil/Zr foil sanwich as an interlayer. Effect of holding time during PTLP-DB on the element diffusion and reacted products at the interface was analyzed and the affected factors on the joint strength during PTLP-DB were explored. The effect of auxiliary pulse current during PTLP-DB between CMC on element diffusion at the interface and joint strength and its mechanism were also studied. The results showed that the optimum holding times were 15~30 min during PTLP-DB on CMC at 950 ℃. With a shorter holding time, the joint strength decreased due to the existance of unreacted Zr elements at the interface, while with a longer holding time, the joint strength decreased due to the overgrowth of CuZr intermetallics at the interface. With the auxiliary pulse current during PTLP-DB, the residual stress at the interface was greatly decreased, which inhibited the propagation of crack into the base materials. While, the auxiliary pulse current can promote the reaction between Cu and Zr and the formation of Zr-Cu intermetallics at the interface, which produced a weaked interface in the joints.

Key wordsTi(C    N)-Al2O3    PTLP-DB    element diffusion    joint strength    auxiliary pulse current
收稿日期: 2013-11-28     
ZTFLH:  TG454  
基金资助:* 国家自然科学基金项目51175239, 江苏省科技计划项目BK2011494和江苏省高校自然科学研究项目11KJA430005资助
作者简介: null

吴铭方, 男, 1962年生, 教授, 博士

图1  
Position Al Ti Cu Zr Ni Mo
A 1.1 79.4 2.3 14.2 0.3 2.7
B 2.4 3.5 8.7 84.9 0.5 -
C 6.5 3.3 30.6 59.1 0.5 -
D 7.1 0.4 86.3 5.9 0.3 -
E 6.4 0.4 55.7 35.8 1.7 -
F 7.1 0.3 88.8 3.3 0.5 -
G 0.7 74.1 17.7 7.1 0.4 -
H 0.9 0.3 37.3 61.5 - -
I 5.2 1.3 88.3 5.2 - -
  
图2  
图3  
图4  
图5  
[1] Ettmayera P, Kolaska H, Lengauer W, Dreyer K. Int J Refract Met Hard Mater, 1995; 13: 343
[2] Pan H Q, Liu Y J, Zhang D X, Itoh I. Mater Mech Eng, 2012; 36(3): 11
[2] (潘厚宏, 刘拥军, 张大向, 伊藤勲. 机械工程材料, 2012; 36(3): 11)
[3] Wu M F, Zhou X L, Ma C, Yang P. Trans China Weld Inst, 2006; 27(12): 65
[3] (吴铭方, 周小丽, 马 骋, 杨 沛. 焊接学报, 2006; 27(12): 65)
[4] Zhang L, Lu X, He X B, Qu X H. Rare Met Mater Eng, 2012; 41: 450
[4] (章 林, 路 新, 何新波, 曲选辉. 稀有金属材料与工程, 2012; 41: 450)
[5] Song X G, Cao J, Wang Y F, Feng J C. Rare Met Mater Eng, 2012; 41: 1247
[5] (宋晓国, 曹 健, 王义峰, 冯吉才. 稀有金属材料与工程, 2012; 41: 1247)
[6] Chen Z, Cao M S, Zhao Q Z. Mater Sci Eng, 2004; A380: 394
[7] Passerone A, Muolo M L. Mater Manuf Process, 2000; 15: 631
[8] Wang J, Li Y J, Ma H J, Liu P. Trans China Weld Inst, 2006; 27(9): 9
[8] (王 娟, 李亚江, 马海军, 刘 鹏. 焊接学报, 2006; 27(9): 9)
[9] Li S J, Liang X B, Duan H P. Key Eng Mater, 2002; 217: 101
[10] Osendi M I, Pablos A, Miranzo P. Mater Sci Eng, 2001; A308: 53
[11] Atabaki M M, Idris J. J Manuf Sci Eng, 2012; 134: 015001
[12] Cook III G O, Sorensen C D. J Mater Sci, 2011; 46: 5305
[13] Zhou S, Li X, Xiong W, Zhou Y. J Wuhan Univ Tech-Mater Sci Ed, 2009; 24: 432
[14] Liu S, Olsen D L, Martin G P. Weld J, 1991; 70: 207
[15] Zhou Y, Gale W F, North T H. Int Mater Rev, 1995; 40: 181
[16] Zhang J X, Chandel R S, Chen Y Z, Seow H P. J Mater Process Technol, 2002; 122: 220
[17] Shen X Q, Li Y J, Puchko U A. Trans China Weld Inst, 2008; 29(12): 41
[17] (沈孝芹, 李亚江, Puchko U A. 焊接学报, 2008; 29(12): 41)
[18] Zhou F, Li Z Z. Trans Nonferrous Met Soc China, 2001; 11: 273
[18] (周 飞, 李志章. 中国有色金属学报, 2001; 11: 273)
[19] Kliauga A M, Travessa D, Ferrante M. Mater Charact, 2001; 46: 65
[20] Yin X H, Li M S, Zhou Y C. J Eur Ceramic Soc, 2007; 27: 3539
[21] Turchanin M A, Agraval P G, Abdulov A R. Powder Metall Met Ceram, 2008; 47: 78
[22] Harvey J P, Gheribi A E, Chartrand P. J Chem Phys, 2011; 135: 084502
[23] Yamaguchi K, Song Y C, Yoshida T, Itagaki K. J Alloys Compd, 2008; 452: 73
[24] Long Y, Li Y Y, Li X Q. Trans Nonferrous Met Soc China, 2006; 16: 2016
[24] (龙 雁, 李元元, 李小强. 中国有色金属学报, 2006; 11: 2016)
[25] Yang X, Xi Z P, Liu Y, Tang H P. Rare Met Mater Eng, 2012; 41: 1065
[25] (杨 鑫, 奚正平, 刘 咏, 汤慧萍. 稀有金属材料与工程, 2012; 41: 1065)
[1] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[2] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[3] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[4] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[6] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[7] 刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51(3): 281-288.
[8] 张旭 王玉敏 雷家峰 杨锐. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012, 48(11): 1306-1314.
[9] 李新梅; 孙文磊; 憨勇; 刘炳 . 纯钛表面电解液微弧碳氮化制备碳氮化钛厚膜[J]. 金属学报, 2008, 44(9): 1105-1110 .
[10] 王全兆; 刘越; 关德慧; 于宝海; 陈志亮; 毕敬 . TiN含量对Ti(C, N)/NiCr金属陶瓷微观结构和力学性能的影响[J]. 金属学报, 2005, 41(11): 1121-1126 .
[11] 熊惟皓;胡镇华;崔崑. Ti(C,N)基金属陶瓷相界面层微晶结构的形成[J]. 金属学报, 1997, 33(5): 473-478.
[12] 熊惟皓;胡镇华;崔崑. Ti(C,N)基金属陶瓷的相界面过渡层[J]. 金属学报, 1996, 32(10): 1075-1080.
[13] 刘宁;赵兴中;江来珠;罗会国;胡镇华;崔崑. Ni粘结的Ti(C,N)金属陶瓷的横向断裂强度与断口的分形分析[J]. 金属学报, 1995, 31(5): 229-235.
[14] 徐可为;白辰东;何家文. Ti(C,N)薄膜的复合硬度与本征硬度的研究[J]. 金属学报, 1995, 31(21): 429-434.
[15] 刘长清;金柱京;吴维;戴少侠;李美栓;师昌绪. Ti(CN)涂层的宏观应力与破坏方式[J]. 金属学报, 1990, 26(1): 107-112.