Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 832-838    DOI: 10.3724/SP.J.1037.2013.00746
  本期目录 | 过刊浏览 |
间隙原子C作用下TiAl合金中析出相的形成及演变规律*
周欢, 张铁邦(), 吴泽恩, 胡锐, 寇宏超, 李金山
西北工业大学凝固技术国家重点实验室, 西安 710072
FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM
ZHOU Huan, ZHANG Tiebang(), WU Zeen, HU Rui, KOU Hongchao, LI Jinshan
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

周欢, 张铁邦, 吴泽恩, 胡锐, 寇宏超, 李金山. 间隙原子C作用下TiAl合金中析出相的形成及演变规律*[J]. 金属学报, 2014, 50(7): 832-838.
Huan ZHOU, Tiebang ZHANG, Zeen WU, Rui HU, Hongchao KOU, Jinshan LI. FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM[J]. Acta Metall Sin, 2014, 50(7): 832-838.

全文: PDF(5840 KB)   HTML
摘要: 

采用XRD, SEM及TEM分析研究间隙原子C作用下Ti-46Al-8Nb-xC (x=0, 0.7, 1.4, 2.5, 原子分数, %)合金中析出相的形成规律、析出相与基体相的位向关系及其在热处理过程中的演变规律. 结果表明, 在C含量为1.4%和2.5%的合金中有长条状Ti2AlC析出, 该析出相在铸锭制备的过程中形成, 在时效热处理中尺寸、数量和分布均无明显变化, 表现出较好的稳定性. 不同C含量合金经固溶处理和时效后析出细小针状的Ti3AlC, 该析出相从γ相中析出, 并与γ相存在位向关系: {100}Ti3AlC //{100}γ, <001> Ti3AlC//<001>γ, 延长时效时间, Ti3AlC尺寸略有增大, 数量变化不明显; 升高时效温度, Ti3AlC的尺寸和数量均有显著增加.

关键词 间隙原子高Nb-TiAl合金碳化物演化位向关系    
Abstract

As promising light-weight high-temperature materials, g-TiAl base alloys are considered as prospective candidates for automobile and aerospace application due to their high specific yield strength. Adding Nb to TiAl alloys increases the liquidus temperature and results in improvents of creep resistance, high temperature strength and oxidation resistance. High Nb-containing TiAl alloys have attracted much attention during past decades. With the addition of carbon in Ti-46Al-8Nb-xC alloys (x=0, 0.7, 1.4, 2.5, atomic fraction, %), the formation of precipitates, the orientation relationship between precipitates and the TiAl matrix and the evolution of the precipitates during heat treatments have been investigated in this work by XRD, SEM and TEM. The results show that lath-shaped precipitates of Ti2AlC can be formed during the preparation of ingots with the addition of 1.4% and 2.5% of C. With good thermal stability, the size, amount and distribution of Ti2AlC precipitates remain almost stable during the aging process. Needle-shaped precipitates of Ti3AlC are formed in the aged alloys with 0.7%, 1.4% and 2.5% of C. And the precipitates are preferentially formed in g grains. The orientation relationship between Ti3AlC precipitates and g phase is found to be {100}Ti3AlC //{100}γ and <001> Ti3AlC //<001>γ. Meanwhile, the precipitation behavior and morphology of Ti3AlC are also discussed. Ti3AlC precipitates grow slightly after prolonged aging, while the amount of the precipitates remains small. With a higher aging temperature, the size of Ti3AlC precipitates increases significantly and an increasing amount of the precipitates is observed.

Key wordsinterstitial atom    high Nb-containing TiAl alloy    carbide    evolution    orientation relationship
    
ZTFLH:  TG146.2  
基金资助:*国家自然科学基金项目51001086和 51371144及国家重点基础研究发展计划项目2011CB605503资助
作者简介: null

周欢, 男, 1990年生, 硕士生

图1  Ti-46Al-8Nb-xC (x=0, 0.7, 1.4, 2.5)合金固溶处理后的XRD谱
图2  Ti-46Al-8Nb-xC合金在1380 ℃固溶处理1 h后的SEM像
图3  Ti-46Al-8Nb-xC合金在900 ℃时效6 h后的SEM像
图4  Ti-46Al-8Nb-1.4C合金在900 ℃时效6 h后Ti3AlC的暗场像及对应区域的电子衍射花样
图5  Ti-46Al-8Nb-1.4C合金在900 ℃时效不同时间的XRD谱
图6  Ti-46Al-8Nb-1.4C合金在900 ℃时效不同时间的SEM像
图7  Ti-46Al-8Nb-1.4C合金在不同温度下时效12 h的SEM像
[1] Loria E A. Intermetallics, 2000; 8: 1339
[2] Kothari K, Radhakrishnan R, Wereley N M. Prog Aerosp Sci, 2012; 55: 1
[3] Noda T. Intermetallics, 1998; 6: 709
[4] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[5] Yu H C, Dong C L, Jiao Z H, Kong F T, Chen Y Y, Su Y J. Acta Metall Sin, 2013; 49: 1311
[5] (于慧臣, 董成利, 焦泽辉, 孔凡涛, 陈玉勇, 苏勇君. 金属学报, 2013; 49: 1311)
[6] Appel F, Oehring M, Wagner R. Intermetallics, 2000; 8: 1283
[7] Gerling R, Schimansky F P, Stark A, Bartels A, Kestler H, Cha L, Scheu C, Clemens H. Intermetallics, 2008; 16: 689
[8] Perdrix F, Trichet M F, Bonnentien J L, Cornet M, Bigot J. Intermetallics, 2001; 9: 807
[9] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermetallics, 2008; 16: 969
[10] Clemens H, Mayer S. Adv Eng Mater, 2013; 15: 191
[11] Wu Z E, Hu R, Zhang T B, Zhou H, Kou H C, Li J S. Acta Metall Sin, 2013; 49: 1381
[11] (吴泽恩, 胡 锐, 张铁邦, 周 欢, 寇宏超, 李金山. 金属学报, 2013; 49: 1381)
[12] Dong L M, Cui Y Y, Yang R. Acta Metall Sin, 2002; 38: 643
[12] (董利民, 崔玉友, 杨 锐. 金属学报, 2002; 38: 643)
[13] Scheu C, Stergar E, Schober M, Cha L, Clemens H, Bartels A, Schimansky F P, Cerezo A. Acta Mater, 2009; 57: 1504
[14] Christoph U, Appel F, Wagner R. Mater Sci Eng, 1997; A239: 39
[15] Chen S, Beaven P A, Wagner R. Scr Metall Mater, 1992; 26: 1205
[16] Tian W H, Nemoto M. Intermetallics, 1997; 5: 237
[17] Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley-VCH, 2011: 282
[18] Gabrisch H, Stark A, Schimansky F P, Wang L, Schell N, Lorenz U, Pyczak F. Intermetallics, 2013; 33: 44
[19] Li S J, Wang Y L, Lin J P, Lin Z, Chen G L. Rare Met Mater Eng, 2004; 33: 144
[19] (李书江, 王艳丽, 林均品, 林 志, 陈国良. 稀有金属材料与工程, 2004; 33: 144)
[20] Pietzka M A, Schuster J C. J Phase Equilib, 1994; 15: 392
[21] Cam G, Flower H M, West D R F. Mater Sci Technol, 1991; 7: 505
[22] Kurz W,Fisher D J,translated by Li J G,Hu Q D. Fundamentals of Solidification. 4th Ed., Beijing: Higher Education Press, 2010: 18
[22] (Kurz W,Fisher D J 著,李建国,胡侨丹 译. 凝固原理. 第四版, 北京: 高等教育出版社, 2010: 18)
[23] Wei Z, Wang H, Jin Y, Zhang H, Zeng S. J Mater Sci, 2002; 37: 1809
[24] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P. Intermetallics, 2007; 15: 625
[25] Chen Z, Su X, Xiang Z, Nie Z. J Mater Sci Technol, 2012; 28: 453
[26] Xia Q F, Wang J N, Yang J, Wang Y. Intermetallics, 2001; 9: 361
[27] Wang P, Viswanathan G B, Vasudevan V K. Metall Trans, 1992; 23A: 690
[28] Menand A, Huguet A, Nerac-Partaix A. Acta Mater, 1996; 44: 4729
[29] Kanchana V. EPL-Europhys Lett, 2009; 87: 26006
[30] Tian W H, Sano T, Nemoto M. Philos Mag, 1993; 68A: 965
[31] Xu Z,Zhao L C. Metal-Solid Phase Transition Theory. Beijing: Science Press, 2004: 7
[31] (徐 洲,赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 7)
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[4] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[5] 盛鹰, 贾彬, 王汝恒, 陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
[6] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[7] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[8] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[9] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[10] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[11] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[12] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[13] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[14] 闫华东,靳慧. G20Mn5N铸钢件微细观孔洞三维特征及形态演化[J]. 金属学报, 2019, 55(3): 341-348.
[15] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.