Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 839-844    DOI: 10.3724/SP.J.1037.2013.00745
  论文 本期目录 | 过刊浏览 |
一种细晶铸造镍基高温合金的组织与力学性能*
杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒
(中国科学院金属研究所, 沈阳 110016)
MICROSTRUCTURE AND MECHANICAL PROPERTIESOF A Ni-BASED SUPERALLOY WITH REFINED GRAINS
YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(7395 KB)   HTML
摘要: 

通过传统铸造方法和细晶铸造工艺制备一种铸造镍基高温合金的6种不同形态与尺寸的晶粒. 结果表明, 细晶铸造工艺制备的样品心部为0.5 mm左右的等轴晶, 外部为柱状晶. 相比传统铸造方法, 细晶铸造工艺获得的晶粒较为细小. g '相和 碳化物随晶粒尺寸减小而变得细小. 室温拉伸性能和550 ℃下高周疲劳性能随晶粒尺寸降低而提高; 在760 ℃和应力662 MPa条件下, 合金的持久性能随晶粒尺寸减小而增加; 但在982 ℃和应力186 MPa条件下, 合金的持久性能随之降低. 细化晶粒提高了合金的中、低温力学性能, 但对其高温力学性能不利.

关键词 镍基高温合金细化剂持久性能高周疲劳性能    
Abstract:A new Ni-based superalloy with the refined grains is to be used in industrial and aircraft turbines because of its high strength and excellent fatigue resistance at lower and medium temperatures (500~800 ℃). The grains with six different sizes have been made by decreasing the pouring temperature from 1460 to 1480 ℃ then 1500 ℃ and adding refiner to alloy and planting seed on the surface of mold. The size of equiaxed crystal grain is reduced to 0.5 mm in the center part of specimen with the columnar crystals in the outside of specimen made by the refining process which is finer than those of traditional process. It has been found that g' phase and carbide are finer in refined grains than those in the coarse grains made by decreasing the pouring temperature. The room-temperature tensile properties and high cycle fatigue properties of tested alloy are improved with decreasing grain size. The stress-rupture properties are increased under the conditions of 760 ℃ and 662 MPa while are decreased with decreasing the grain size. The grain structure and size are refined by the refining process that dominated the excellent mechanical properties of tested alloy at lower and medium temperatures. However, it is not good for the mechanical properties at high temperatures.
Key wordsNi-based superalloy    refiner    stress-rupture property    high cycle fatigue property
收稿日期: 2013-11-19      出版日期: 2014-07-20
ZTFLH:  TG146  
基金资助:*国家重点基础研究发展计划项目2010CB631200
和2010CB631206资助
Corresponding author: YANG Jinxia, associate professor, Tel: (024)23971787, E-mail: jxyang@imr.ac.cn   
作者简介: 杨金侠, 女, 1970年生, 副研究员, 博士

引用本文:

杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi. MICROSTRUCTURE AND MECHANICAL PROPERTIESOF A Ni-BASED SUPERALLOY WITH REFINED GRAINS. Acta Metall, 2014, 50(7): 839-844.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00745      或      http://www.ams.org.cn/CN/Y2014/V50/I7/839

[1] Ewing B A, Green K A. In: Gell M, Kortovin C S, Bricknell R H, Kent W B, Radavich J F eds., Superalloys, Champion: The Metallergical Society of AIME, 1984: 33
[2] McClean M. Mater Sci Technol, 1988; 4: 205
[3] Bouse G K, Behrend M R. In: Loria E ed., Mechanical Properties of Microcast-X Alloy 718 Fine Grain Investment Castings, Superalloy 718-Metallurgy and Applications, Warrendale, PA: The Metallurgical Society, 1989: 319
[4] Prichard P D, Dalal R P. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys, Champion: The Metallurgical Society of AIME, 1992: 205
[5] Liu L, Zhen B L, Banerlly A, Relf W. Scr Metall Mater, 1994; 30: 593
[6] Liu L, Huang T, Xiong Y, Yang A, Zhao Z, Zhang R, Li J. Mater Sci Eng, 2005; A394: 1
[7] Xiong Y, Yang A, Guo Y, Liu W, Liu L. Sci Technol Adv Mater, 2001; 2: 13
[8] Xiong Y H, Liu W, Yang A M, Zhang R, Liu L. Acta Metall Sin, 1999; 35: 689(熊玉华, 柳 伟, 杨爱民, 张 蓉, 刘 林. 金属学报, 1999; 35: 689)
[9] Ma Y, Sun J, Xie X, Hu Y, Zhao J, Yan P. J Mater Sci Technol, 2003; 137: 35
[10] Zhang B, Cui J, Liu G. Mater Sci Eng, 2003; A355: 325
[11] Paul P C, Nasar S A. Introduction of Electromagnetic Fields. New York: McGraw-Hill, 1987: 306
[12] Li T G, Cao Z Q, Jin J Z, Zhang Z F. Mater Trans, 2001; 42: 281
[13] Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z. Mater Sci Eng, 2002; A327: 133
[14] Zhou J, Xie F X, Wu X Q, Zhang J. Foundry, 2009; 58: 678(周 俊, 谢发勤, 吴向清, 张 军. 铸造, 2009; 58: 678)
[15] Zheng J B, Ding J, Guo Y P, Liu L, Liu W, Li X J. Acta Metall Sin, 1998; 34: 362(郑建邦, 丁 洁, 郭益平, 刘 林, 柳 伟, 李行建. 金属学报, 1998; 34: 362)
[16] Zhao H T, Shi C X. Acta Metall Sin, 1981; 17: 118(赵慧田, 师昌绪. 金属学报, 1981; 17: 118)
[17] EI-Bagoury N, Nofal A. Mater Sci Eng, 2010; A527: 7793
[18] Hu H Q. Principles of Metal Solidification. Beijing: Machinery Industry Press, 1991: 48(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 1991: 48)
[19] Herlach D M. Mater Sci Eng, 1994; R12: 177
[20] Peng Z F. Acta Metall Sin, 2002; 23: 135(彭志方. 金属学报, 2002; 23: 135)
[21] Yin F S. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2003(殷凤仕. 中国科学院金属研究所博士学位论文, 沈阳, 2003)
[22] Jin W Z, Li J, Li T J, Yin G M. Rare Met Mater Eng, 2008; 37: 1012(金文中, 李 军, 李廷举, 殷国茂. 稀有金属材料与工程, 2008; 37: 1012)
[23] Qiu H, Qian H C, Samir H A, Wu S M. Foundry Technol, 2004; 25: 265(邱 华, 钱翰城, Samir H A, 吴仕明. 铸造技术, 2004; 25: 265)
[24] Nilsson J O, Thorvaldsson T. Fatigue Fract Eng Mater Struct, 1985; 8: 4
[25] Leverant G R. Trans Metall Soc AIME, 1969: 245
[26] Liu F X, Yuan W M, Tang X, Yang A D. Acta Metall Sin, 1995; 31(Suppl): S739(刘发信, 袁文明, 汤 鑫, 杨爱德. 金属学报, 1995; 31(增刊): S739)
[1] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[2] 胡松松,刘林,崔强伟,黄太文,张军,傅恒志. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长*[J]. 金属学报, 2016, 52(8): 897-904.
[3] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[4] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[5] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[6] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[7] 钟华, 任忠鸣, 李传军, 钟云波, 玄伟东, 王秋良. 强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响[J]. 金属学报, 2015, 51(4): 473-482.
[8] 张北江,赵光普,张文云,黄烁,陈石富. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015, 51(10): 1227-1234.
[9] 童锦艳,冯微,付超,郑运荣,冯强. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252.
[10] 赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
[11] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[12] 林惠文,刘纪德,周亦胄,金涛,孙晓峰. Pt对镍基单晶高温合金持久性能的影响[J]. 金属学报, 2015, 51(1): 77-84.
[13] 柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50(9): 1102-1108.
[14] 熊继春, 李嘉荣, 孙凤礼, 刘世忠, 韩梅. 单晶高温合金DD6再结晶组织及其对持久性能的影响*[J]. 金属学报, 2014, 50(6): 737-743.
[15] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.