Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 489-497    DOI: 10.3724/SP.J.1037.2013.00719
  本期目录 | 过刊浏览 |
焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响*
王东1,2, 王全兆2, 肖伯律2, 倪丁瑞2, 马宗义2()
1 中国科学技术大学化学与材料科学学院, 合肥 230026
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
EFFECT OF HEAT TREATMENT BEFORE WELDING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED SiCp/Al-Cu-Mg COMPOSITE JOINTS
WANG Dong1,2, WANG Quanzhao2, XIAO Bol2, NI Dingrui2, MA Zongyi2()
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

王东, 王全兆, 肖伯律, 倪丁瑞, 马宗义. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响*[J]. 金属学报, 2014, 50(4): 489-497.
Dong WANG, Quanzhao WANG, Bol XIAO, Dingrui NI, Zongyi MA. EFFECT OF HEAT TREATMENT BEFORE WELDING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED SiCp/Al-Cu-Mg COMPOSITE JOINTS[J]. Acta Metall Sin, 2014, 50(4): 489-497.

全文: PDF(5243 KB)   HTML
摘要: 

在工具转速800 r/min, 焊接速度100 mm/min的工艺参数下, 对6 mm厚的15%SiCp/2009Al (体积分数)板材在软态(固溶态)和硬态(自然时效态)下进行搅拌摩擦焊接, 均获得致密无缺陷的接头. 结果表明, 样品原始状态对焊核区的晶粒尺寸、析出相(Al2Cu)分布和硬度均影响不大. 2种样品的热影响区均存在2个低硬度区. 靠近焊核区的低硬度区在焊接热循环过程中温度较高, 2种样品均发生Al2Cu相的粗化, 硬度值相同; 但在远离焊核区的低硬度区, 固溶态样品不发生固溶原子团簇回溶, 该区域的硬度略高于自然时效态样品, 并且位置更靠近焊核中心. 2种接头横向拉伸时均断裂在靠近焊核的低硬度区, 强度基本相同, 可达母材强度的83%. 这表明, 固溶软态下进行15%SiCp/2009Al板材的搅拌摩擦焊接, 可以取得常规时效硬态下焊接的效果, 有助于扩大焊接工艺窗口, 减少焊接工具磨损.

关键词 铝基复合材料搅拌摩擦焊微观组织析出相力学性能    
Abstract

Discontinuously reinforced aluminum matrix composites (AMCs) have been widely applied in structures of aerospace industry. Wide industrial applications of AMCs depend on effective joining methods, which are dependent on the use of a specific material and process. As a new solid-state welding technique, friction stir welding (FSW) has been attempted for joining the AMCs in last few years. However, few attentions have been paid to the effect of initial heat treatment tempers of the AMCs on the FSW joints. In this work, 6 mm thick SiCp/2009Al composite plates in both soft (solution temper) and hard (natural aging temper) conditions were successfully friction stir welded at a rotation rate of 800 r/min and a welding speed of 100 mm/min (named as Sol-FSW and T4-FSW samples). In the nugget zone (NZ) of both samples, the grain size and the distribution of the coarse Al2Cu phases were similar. In the heat affected zone, two low hardness zones (LHZs) were observed. LHZ I adjacent to the NZ had the lowest hardness. Both samples had the similar hardness in this zone. For the Sol-FSW sample, LHZ II far away from the NZ had a higher hardness and was closer to the NZ compared to that of the T4-FSW sample. The ultimate tensile strength of both the samples was similar and reached 83% of T4-tempered base metal. Both samples failed in LHZ I adjacent to the NZ due to the lowest hardness in this zone. This indicates that for the SiCp/2009Al composite under solution temper it is possible to produce similar joints to that under natural aging temper using FSW technique. FSW of the composites under soft condition is beneficial to enlarging the welding process window and reducing the tool wear.

Key wordsaluminum matrix composite    friction stir welding    microstructure    precipitate    mechanical property
收稿日期: 2013-11-11     
ZTFLH:  TG146. 2  
基金资助:*国家重点基础研究发展计划资助项目2012CB619600
作者简介: null

王 东, 男, 1980年生, 博士生

Sample Heat treatment and welding processing
BM Solutionized at 516 ℃ for 1 h, water quenching, naturally aged for 7 d
Sol-FSW Solutionized at 516 ℃ for 1 h, quenching, welded, naturally aged for 7 d
T4-FSW BM sample welded, naturally aged for 7 d
T4-FSW-T4 T4-FSW sample re-solutionized at 516 ℃ for 1 h, water quenching, naturally aged for 7 d
  
图1  
图 2  
Sample YS / MPa UTS / MPa EL / % UTSJoint/UTSBM Fracture location
BM 332 538 12.6 -  -
Sol-FSW 297 445 5.7 0.83 LHZ I
T4-FSW 300 444 4.1 0.83 LHZ I
T4-FSW-T4 323 516 8.6 0.96 LHZ I
表2  固溶态及自然时效态15%SiCp/2009Al 的FSW接头及母材的拉伸性能
图3  
图4  
图5  
图6  
图7  
图8  
[1] Lloyd D J. Int Mater Rev, 1994; 39: 1
[2] Tjong S C, Ma Z Y. Mater Sci Eng, 2000; R29: 49
[3] Xu S J, Xiao B L, Liu Z Y, Wang W G, Ma Z Y. Acta Metall Sin, 2012; 48: 882
[3] (许世娇, 肖伯律, 刘振宇, 王文广, 马宗义. 金属学报, 2012; 48: 882)
[4] Zhang Q, Wang Q Z, Xiao B L, Ma Z Y. Acta Metall Sin, 2012; 48: 135
[4] (张 琪, 王全兆, 肖伯律, 马宗义. 金属学报, 2012; 48: 135)
[5] Ellis M B D. Int Mater Rev, 1996; 41: 41
[6] Ni D R, Chen D L, Xiao B L, Wang D, Ma Z Y. Mater Des, 2013; 55: 64
[7] Wang D, Xiao B L, Wang Q Z, Ma Z Y. J Mater Sci Technol, 2014; 30: 54
[8] Srivatsan T S, Meslet A H, Petraroli M, Hotton B, Lam P C. Mater Sci Eng, 2002; A325: 202
[9] Shindo D J, Rivera A R, Murr L E. J Mater Sci, 2002; 37: 4999
[10] Liu H J, Fenga J C, Fujiib H, Nogi K. Int J Mach Tool Manuf, 2005; 45: 1635
[11] Prado R A, Murr L E, Shindo D J, Sota K F. Scr Mater, 2001; 45: 75
[12] Wang D, Wang Q Z, Xiao B L, Ma Z Y. Mater Sci Eng, 2014; A589: 271
[13] Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, Volpone L M. Compos Sci Technol, 2006; 66: 363
[14] Wang D, Xiao B L, Wang Q Z, Ma Z Y. Mater Des, 2007; 28: 1440
[15] Feng A H, Xiao B L, Ma Z Y. Compos Sci Technol, 2008; 68: 2141
[16] Genevois C, Deschamps A, Denquin A, Cottignies B D. Acta Mater, 2005; 538: 2447
[17] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
[18] Inem B. Mater Sci Eng, 1995; A197: 91
[19] Charit I, Mishra R S. Scr Mater, 2008; 58: 367
[20] Jariyaboon M, Davenport A J, Ambat R, Connolly B J, Williams S W, Price D A. Corros Sci, 2007; 49: 877
[21] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955
[22] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[23] Wang S C, Starink M J. Int Mater Rev, 2005; 50: 193
[24] Rodrigo P, Poza P, Utrilla V, Urena A. J Alloys Compd, 2009; 479: 451
[25] Marceau R K W, Sha G, Lumley R N, Ringer S P. Acta Mater, 2010; 58: 1795
[26] Liu F C, Ma Z Y. Metall Mater Trans, 2005; 36A: 2378
[27] Zhang Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
[27] (张 振. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[28] Jones M J, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver J H. Scr Mater, 2005; 52: 693
[29] Homma T, Moody M P, Saxey D W, Ringer S P. Metall Mater Trans, 2012; 43A: 2192
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.