Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 447-453    DOI: 10.3724/SP.J.1037.2013.00672
  本期目录 | 过刊浏览 |
回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*
温涛, 胡小锋 宋元元, 闫德胜, 戎利建()
中国科学院金属研究所, 沈阳 110016
EFFECT OF TEMPERING TEMPERATURE ON CARBIDE AND MECHANICAL PROPERTIES IN A Fe-Cr-Ni-Mo HIGH-STRENGTH STEEL
WEN Tao, HU Xiaofeng, SONG Yuanyuan, YAN Desheng, RONG Lijian()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

温涛, 胡小锋 宋元元, 闫德胜, 戎利建. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*[J]. 金属学报, 2014, 50(4): 447-453.
Tao WEN, Xiaofeng HU, Yuanyuan SONG, Desheng YAN, Lijian RONG. EFFECT OF TEMPERING TEMPERATURE ON CARBIDE AND MECHANICAL PROPERTIES IN A Fe-Cr-Ni-Mo HIGH-STRENGTH STEEL[J]. Acta Metall Sin, 2014, 50(4): 447-453.

全文: PDF(3847 KB)   HTML
摘要: 

利用TEM和三维原子探针(3DAP)研究了一种Fe-Cr-Ni-Mo高强钢中碳化物随回火温度的变化及其对力学性能的影响. 结果显示, 回火温度较低(400 ℃)时, 钢中析出M3C合金渗碳体及M7C3合金碳化物, M为Fe, Cr和Mn的组合, 其中M3C长度约为1 μm, 而M7C3尺寸较小, 小于200 nm; 回火温度较高时(500和600 ℃), 碳化物析出数量增加, 但M3C合金渗碳体尺寸变小, 数量减少甚至不出现, 同时析出尺寸较小的M2C和M6C(小于200 nm); 继续提高回火温度(650 ℃), 除M2C外还出现MC型碳化物, 其尺寸小于100 nm, 析出数量减少. 合金碳化物M2C, M6C和MC的合金元素主要以V, Cr和Mo为主. 高强钢的强度随回火温度的升高而下降, 但在500~600 ℃回火温度区间, 由于V碳化物析出会引起二次硬化效果, 强度下降不明显, 因此实验钢在530~600 ℃内回火后可获得较好的强韧性配合.

关键词 Fe-Cr-Ni-Mo高强钢碳化物回火温度低温冲击韧性    
Abstract

The variation of carbides with tempering temperature in a Fe-Cr-Ni-Mo high-strength steel and their effect on mechanical properties are investigated by means of TEM and three-dimensional atom probe (3DAP). The results show that there mainly appear M3C and M7C3 when tempering temperature is rather low (400 ℃), the former is thick with a length of about 1 μm and the latter is fine and the length is less than 200 nm, and M is composed of Fe, Cr and Mn. Tempering at 500 and 600 ℃, the amount of carbide increases gradually, and there appear M2C and M6C types of carbide which are both less than 200 nm in length, simultaneously M3C becoming fine or disappear. When tempering temperature further increases to 650 ℃, besides M2C there also appears MC type of carbide. The size of both M2C and MC are less than 100 nm, meanwhile the amount of carbide decreases. The M of M2C, M6C and MC is a combination mainly of Cr, Mo and V. The strength of the Fe-Cr-Ni-Mo high-strength steel gradually reduces with increasing tempering temperature, but the downtrend of strength is rather small when tempering temperature is in the range of 500~600 ℃, owing to secondary hardening induced by the appearance of V-carbide. In short, the high-strength steel could obtain better combination of strength and impact toughness after tempering at about 530~600 ℃.

Key wordsFe-Cr-Ni-Mo    high-strength steel    carbide    tempering temperature    impact toughness at low- temperature
收稿日期: 2013-10-23     
ZTFLH:  TG161  
基金资助:*国家自然科学基金重大研究计划资助项目 91226204
作者简介: null

温 涛, 男, 1985年生, 博士生

图1  
图2  
图3  
Tempera-
ture / ℃
Type Size / nm Alloying element
R S1 S2 R S1 S2 R S1 S2
400 M3C M7C3 M7C3 1000 150 20~50 Fe, Cr, Mn Fe, Cr, Mn Fe, Cr, Mn
500 M3C M7C3 M2C 800 150 20~50 Fe, Cr, Mn Fe, Cr, Mn, Mo Fe, Cr, Mn, Mo
600 M2C M6C 150~200 20~50 Fe, Cr, Mo, V Fe, Cr, Mo, V
650 M2C MC 80~100 50~80 Fe, Cr, Mo, Mn, V Fe, Cr, Mo, Mn, V
  
图4  
[1] Misra R D K, Jia Z, Malley R O, Jansto S J. Mater Sci Eng, 2011; A528: 8772
[2] Lee K H, Park S G, Kim Min C, Lee B S, Wee D M. Mater Sci Eng, 2011; A529: 156
[3] Lee B S,Kim M C,Yoon J H,Hong J H. Int J Press Ves Pip, 2010; 87: 74
[4] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K, Lee S, Kim N J. Metall Mater Trans, 2009; 40A: 1851
[5] Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578
[5] (王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
[6] Michael D M, David N S. Acta Mater, 2011; 59: 1881
[7] Takashi O, Takashi W, Masanori A, Kazumi A. Nucl Eng Des, 2008; 238: 408
[8] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786
[8] (刘庆东, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)
[9] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
[9] (刘庆东, 楮于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44: 1281)
[10] Zhang Y. PhD Dissertation, Dalian Maritime University, 2007
[10] (张 洋. 大连海事大学博士学位论文, 2007)
[11] Zhang S H. Alloy-Steel. Beijing: Metallurgical Industry Press, 1981: 10, 37
[11] (章守华. 合金钢. 北京: 冶金工业出版社, 1981: 10, 37)
[12] Qi Z F. Diffusion and Phase Transition in Solid Metals. Beijing: China Machine Press, 1998: 201
[12] (戚正风. 固态金属中的扩散与相变. 北京: 机械工业出版社, 1998: 201)
[13] Janovec J, Vyrostkova A, Svoboda M. Metall Mater Trans, 1994; 25A: 267
[14] Tao P, Zhang C, Yang Z G, Takeda H. Acta Metall Sin, 2009; 45: 51
[14] (陶 鹏, 张 弛, 杨志刚, 武田裕之. 金属学报, 2009; 45: 51)
[15] Bjarbo A, Hattestrand M. Metall Mater Trans, 2001; 32A: 19
[16] Pigrova G D. Metall Mater Trans, 1996; 27A: 498
[17] Sun S W, Mao J F, Lei T Q, He L L. Acta Metall Sin, 2000; 36: 1009
[17] (孙树文, 茅建富, 雷廷权, 贺连龙. 金属学报, 2000; 36: 1009)
[18] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
[18] (刘庆东, 彭建超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[19] Sun S W, Lei T Q, Tang Z X, You G, Wang X, Chen J L. Iron Steel, 1998; 33: 38
[19] (孙树文, 雷廷权, 唐之秀, 犹 公, 王 欣, 陈家伦. 钢铁, 1998; 33: 38)
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[5] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[6] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[7] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[8] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[9] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[10] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[11] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[12] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[13] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[14] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[15] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.