Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 515-523    DOI: 10.3724/SP.J.1037.2013.00623
  论文 本期目录 | 过刊浏览 |
超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*
骆宗安, 刘纪源, 冯莹莹, 彭文
(东北大学轧制技术及连轧自动化国家重点实验室, 沈阳110819)
EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL
LUO Zongan, LIU Jiyuan, FENG Yingying, PENG Wen
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
全文: PDF(16853 KB)   HTML
摘要: 

采用EBSD和TEM对不同超快速连续退火条件下的低Si系Nb-Ti微合金化TRIP钢进行了显微组织观察, 并探讨了拉伸性能. 结果表明, 100 ℃/s的加热速率和短时保温制度, 使铁素体晶粒细化, 并保留了热轧过程中的弥散细小的微合金元素碳氮化物析出, 因此提高了钢的强度和塑性. 缓冷制度对消除钢的屈服平台有显著作用, 而强度有所下降; 钢的强度随着退火温度的升高而升高. 退火温度在830 ℃时, 残余奥氏体形貌多呈膜状结构与贝氏体铁素体板条相伴出现, 使钢的强度和塑性达到了最佳的配合: 抗拉强度748 MPa, 屈服强度408 MPa, 均匀延伸率21.3%, 加工硬化指数0.27, 强塑积15932.4 MPa·%.

关键词 超快速连续退火缓冷制度晶粒细化残余奥氏体Nb-Ti微合金化    
Abstract:Si-containing transformation induced plasticity (TRIP) steel is noted for good balance of excellent formability and high strength as the advanced high strength steel (AHSS). The advantage of this steel can be attributed to the TRIP effect, which is the transformation of the retained austenite. Furthermore, the local increase in specific volume caused by the TRIP effect can help to close propagating cracks. It is favorable for the automotive structural components based on the high work hardening rate and energy absorption behavior. Low Si-containing can optimize the galvanized performance of the cold rolling TRIP steel, and the ferrite stabilization can be compensated by adding Al. Microalloying with Nb and Ti may provide effective means for further strengthening via grain refinement and precipitation strengthening. The ultra-fast continuous annealing comprised of rapid heating and short austempering is a new-style process for grain refinement and precipitation solidifying. However, the influences of the process on the cold rolling low Si TRIP steel, especially the austenite transformation characteristics and their effects on microstructure and mechanical properties, were rarely reported. Therefore, in this work the microstructures of low Si grade Nb-Ti microalloying TRIP steel under different ultra-fast continuous annealing conditions were observed via EBSD and TEM, and the tensile properties were discussed. The results show that the polygonal ferrite is refined by heating rate of 100 ℃/s and short asutempering procedure. The dispersive and fine microalloyed carbonitrides formed during the hot-rolling stage are reserved. Therefore, the strength and ductility are enhanced simultaneously. The slow cooling procedure can effectively contribute to eliminate the yield point, while the strength is slightly decreased. As the annealing temperature increasing, the strength is enhanced. When the annealing temperature is 830 ℃, the morphology of retained austenite consists of alternated film and bainite-ferrite plates, resulting in optimal combination of strength and ductility: tensile strength 748 MPa, yield strength 408 MPa, uniform elongation 21.3%, work hardening exponent 0.27, balance of strength and ductility is 15932.4 MPa·%.
Key wordsultra-fast continuous annealing    slow cooling procedure    grain refinement    retained austenite    Nb-Ti microalloying
收稿日期: 2013-09-30      出版日期: 2014-05-20
:  TG161  
基金资助:国家高技术研究发展计划项目2013AA031302和中央高校基本科研业务费专项资金项目090307004资助
Corresponding author: LUO Zongan, associate professor, Tel:13066628868, E-mail: Luoza@ral.neu.edu.cn   
作者简介: 骆宗安, 男, 1967年生, 副教授

引用本文:

骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
LUO Zongan, LIU Jiyuan, FENG Yingying, PENG Wen. EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL. Acta Metall Sin, 2014, 50(5): 515-523.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00623      或      http://www.ams.org.cn/CN/Y2014/V50/I5/515

[1] Jimenez-Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Zwaag S. Acta Mater, 2009; 57: 533
[2] Etienne G, Anne M, Pascal J, Yvan H, Bert V, Jan V H. Scr Mater, 2001; 44: 885
[3] Tirumalasetty G K, Van Huis M A, Fang C M, Xu Q, Tichelaar F D, Hanlon D N, Sietsma J, Zandbergen H W. Acta Mater, 2011; 59: 7406
[4] Wang C J, Sun X J, Yong Q L, Li Z D, Zhang X, Jiang L. Acta Metall Sin, 2013; 49: 399(王长军, 孙新军, 雍岐龙, 李昭东, 张 熹, 江 陆. 金属学报, 2013; 49: 399)
[5] Shanmugam S, Ramisetti N K, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2008; A478: 26
[6] Xu Y B, Hou X Y, Wang Y Q, Wu D. Acta Metall Sin, 2012; 48: 176(徐云波, 侯晓英, 王业勤, 吴 迪. 金属学报, 2012; 48: 176)
[7] Jacoues P J, Girault E, Harlef P, Delannay F. ISIJ Int, 2001; 41: 1061
[8] Luo H W, Zhao L, Kruijver S O, Sietsma J, Zwaag S V D. ISIJ Int, 2003; 43: 1219
[9] Eui P K, Shun F, Kozo S, Shigeru S. Mater Sci Eng, 2011; A528: 5007
[10] Chiang J, Lawrence B, Boyd J D K, Pilkey A K. Mater Sci Eng, 2011; A528: 4516
[11] Liu J Y, Zhang Z C, Zhu F X, Li Y M, Manabe K I. J Iron Steel Res Int, 2012; 19: 41
[12] Zhang W N, Liu Z Y, Wang G D. Acta Metall Sin, 2010; 46: 1230(张维娜, 刘振宇, 王国栋. 金属学报, 2010; 46: 1230)
[13] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[14] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[15] Lan H F, Du L X, Wang X N, Liu X H. Steel Res Int, 2012; 83: 139
[16] Wang X P, Du L X, Zhou M. J Northeastern Univ (Nat Sci), 2012; 33: 1137(王晓鹏, 杜林秀, 周 民. 东北大学学报(自然科学版), 2012; 33: 1137)
[17] Asoo K, Tomota Y, Harjo S, Okitsu Y. ISIJ Int, 2011; 51: 145
[18] Han D, Sun X J, Hui W J, Zhang S L, Shi J, Wang M Q. ISIJ Int, 2008; 48: 1126
[19] Sugimoto K, Murata M, Muramatsu T, Mukai Y. ISIJ Int, 2007; 47: 1357
[20] Lee C G, Kim S J, Oh C S, Lee S. ISIJ Int, 2002; 42: 1162
[21] Zwaag S, Wang J. Scr Mater, 2002; 47: 169
[22] Cui Z Q, Qin Y C. Metallography and Heat Treatment. Beijing: China Machine Press, 2007: 262(崔忠圻, 覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 262)
[23] Tirumalasetty G K, Van Huis M A, Kwakernaak C, Sietsma J, Sloof W G, Zandbergen H W. Acta Mater, 2012; 60: 1311
[24] Jimenez-Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Zwaag S. Acta Mater, 2007; 55: 6713
[25] Zaefferer S, Ohlert J, Bleck W. Acta Mater, 2004; 52: 2765
[1] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[2] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[3] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[4] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[5] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[6] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[7] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[8] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[9] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[10] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[11] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[12] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[13] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[14] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[15] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.