Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 652-658    DOI: 10.3724/SP.J.1037.2013.00584
  本期目录 | 过刊浏览 |
超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*
王斌, 刘振宇(), 冯洁, 周晓光, 王国栋
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳110819
PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING
WANG Bin, LIU Zhenyu(), Feng Jie, ZHOU Xiaoguang, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
Bin WANG, Zhenyu LIU, Jie Feng, Xiaoguang ZHOU, Guodong WANG. PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING[J]. Acta Metall Sin, 2014, 50(6): 652-658.

全文: PDF(3406 KB)   HTML
摘要: 

利用超快速冷却技术对碳素钢中渗碳体的纳米析出行为和强化作用进行了研究. 实验结果表明, 在超快速冷却条件下, 0.17%C和0.33%C钢的组织中形成了大量弥散的纳米级渗碳体析出, 颗粒尺寸为10~100 nm, 实现了在无微合金元素添加的条件下渗碳体的纳米级析出. 随着超快速冷却终冷温度的降低, 钢的屈服强度和抗拉强度都逐渐增加, 当超快速冷却的终冷温度从890 ℃下降到600 ℃时, 0.17%C和0.33%C钢的屈服强度提高超过了100 MPa. 在超快速冷却之后采用形变热处理工艺, 可以进一步增加钢的位错密度, 促进渗碳体均匀形核, 实现了纳米级渗碳体颗粒在整个组织中更加均匀弥散的分布, 从而更好地实现均匀强化的效果. 在超快速冷却和形变热处理工艺条件下, 0.17%C钢的屈服强度提高到600 MPa以上.

关键词 超快速冷却纳米渗碳体析出强化形变热处理    
Abstract

In recent years, the precipitation strengthening by cementite, which is a common and economical second phase constituent in steels, has drawn renewed attention in the context of precipitation strengthening, because if cementites can be effectively refined to the scale of a few nanometers, they can induce significant precipitation strengthening effect. Therefore, nanoscale cementite is viewed as a viable option to replace precipitates of microalloying elements for reducing alloy costs in steel products. Given that cementites are usually to form lamellar pearlite structure in a traditional cooling process and generally tend to coarsen at relatively high temperatures, the thermodynamic feasibility for the formation of nanoscale cementite precipitates during cooling has been determined in the previous study, and the non-equilibrium precipitation of nanoscale cementite can be realized by increasing the cooling rate after hot rolling. Thus, the ultra fast cooling (UFC) technology was applied after the hot strip rolling for the research of precipitation behavior and precipitation strengthening of nanoscale cementite in carbon steels. The experimental results demonstrated that the UFC technology shows the unique effects on strengthening in carbon steels and a large number of dispersed nanoscale cementite precipitates with the size of 10~100 nm have been formed in 0.17%C and 0.33%C steels. The nanoscale precipitation of cementite was realized in the microstructure by UFC without the microalloy elements addition. Both the yield strength and tensile strength of the steels increased gradually with the stop temperature of UFC decreasing, and the yield strength increments of 0.17%C and 0.33%C steel were more than 100 MPa, when the stop temperature of UFC decreased from 890 ℃ to 600 ℃. Besides, thermomechanical treatment (TMT) process was introduced after UFC to explore uniform nucleation of cementite in hot-rolled carbon steels, and it is a feasible way to realize the uniform precipitation of nanoscale cementite in the entire miscrostructure for the further strengthening improvement. This was accomplished by subjecting the UFC cooled steel to a small degree of plastic deformation, with the aim to increase the dislocation density evidently. By combining UFC and TMT processing, the yield strength of 0.17%C steel is greater than 600 MPa, leading to a superior strengthening effect.

Key wordsultra fast cooling (UFC)    nanoscale cementite    precipitation strengthening    thermomechanical treatment (TMT)
收稿日期: 2013-09-18     
ZTFLH:  TG355.5  
基金资助:*中国博士后基金项目2014M551107和中央高校基本科研业务费专项资金项目N130307001资助
Steel C Si Mn P S N Fe
I 0.17 0.18 0.70 0.008 0.002 0.0035 Bal.
II 0.33 0.18 0.71 0.004 0.001 0.0020 Bal.
表1  实验用钢的化学成分
图1  超快速冷却工艺示意图
图2  超快速冷却终冷温度对0.17%C 和0.33%C钢力学性能的影响
图3  超快速冷却终冷温度为600 ℃条件下0.17%C和0.33%C钢的SEM像
图4  超快速冷却终冷温度为600 ℃条件下0.17%C和0.33%C钢的TEM像
图5  形变热处理工艺示意图
图6  形变热处理工艺中超快速冷却终冷温度对0.17%C钢力学性能的影响
图7  超快速冷却和形变热处理后0.17%C钢的SEM和TEM像
图8  超快速冷却条件下0.17%C钢中先共析铁素体的TEM像
图9  0.17%C钢中的渗碳体在位错区域析出的TEM像
[1] Kagechika H. ISIJ Int, 2006; 46: 939
[2] The Technical Society, the Iron Steel Institute of Japan. ISIJ Int, 2008; 48: 707
[3] Shin D H, Kim Y S, Lavernia E J. Acta Mater, 2001; 49: 2387
[4] Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J. Acta Mater, 2003; 51: 5555
[5] Tarui T, Maruyama N, Takahashi J, Nishida S, Tashiro H. Nippon Steel Tech Rep, 2005; (91): 56
[6] Fu J, Wu H J, Liu Y C, Kang Y L. Sci China, 2007; 50E: 166
[7] Li Y J, Borchers P C, Westerkamp S, Goto S, Raabe D, Kirchheim R. Acta Mater, 2011; 59: 3965
[8] Fu J, Li G Q, Mao X P, Fang K M. Metall Mater Trans, 2011; 42A: 3797
[9] Wang B, Liu Z Y, Zhou X G, Wang G D, Misra R D K. Mater Sci Eng, 2013; A575: 189
[10] Leeuwe Y V, Onink M, Sietsm J, Zwaag S. ISIJ Int, 2001; 41: 1037
[11] Wang B, Liu Z Y, Zhou X G, Wang G D. Acta Metall Sin, 2013; 49: 26
[11] (王 斌, 刘振宇, 周晓光, 王国栋. 金属学报, 2013; 49: 26)
[12] Lucas A, Simon P, Bourdon G, Herman J C, Riche P, Neutjens J, Harlet P. Steel Res Int, 2004; 75: 139
[13] Wang G D. Shanghai Met, 2008; 30(2): 1
[13] (王国栋. 上海金属, 2008; 30(2): 1)
[14] Buzzichelli G, Anelli E. ISIJ Int, 2002; 42: 1355
[15] Klueh R L, Hashimoto N, Maziasz P J. Scr Mater, 2005; 53: 275
[16] Kaufman L, Radcliffe S V, Cohen M. Decomposition of Austenite by Diffusional Processe. New York: Interscience, 1962: 313
[17] Liu Z C,Ren H P. Diffusion Phase Transformation of Supercooled Austenite. Beijing: Science Press, 2007: 79
[17] (刘宗昌,任慧平. 过冷奥氏体扩散型相变. 北京: 科学出版社, 2007: 79)
[18] Ghosh S. Scr Mater, 2010; 63: 273
[19] Yin H, Emi T, Shibata H. ISIJ Int, 1998; 38: 794
[20] Ohmori Y. ISIJ Int, 2001; 41: 554
[21] Perrard F, Deschamps A, Maugis P. Acta Mater, 2007; 55: 1255
[22] Hin C, Bréchet Y, Maugis P, Soisson F. Acta Mater, 2008; 56: 5535
[23] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[24] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 329
[24] (雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 329)
[1] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[2] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[3] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
[4] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[5] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[6] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[7] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[8] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[9] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[10] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[11] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[12] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[13] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[14] 王斌,刘振宇,周晓光,王国栋. 轧后冷却路径对中碳钢扩孔性能的影响[J]. 金属学报, 2012, 48(4): 435-440.
[15] 张云崖 邓运来 万里 张新明. 形变热处理对Al-Zn-Mg-Cu合金板材组织与硬度的影响[J]. 金属学报, 2011, 47(10): 1270-1276.