Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 479-488    DOI: 10.3724/SP.J.1037.2013.00580
  本期目录 | 过刊浏览 |
感应加热连续退火对铜包铝复合线材再结晶组织和界面金属间化合物的影响
姜雁斌1,2, 刘新华1,2, 王春阳1, 莫永达1, 谢建新1,2
1 北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室, 北京 100083
2 北京科技大学现代交通金属材料与加工技术北京实验室, 北京 100083
INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE
JIANG Yanbin1,2, LIU Xinhua1,2, WANG Chunyang1, MO Yongda1, XIE Jianxin1,2
1 Key Laboratory for Advanced Materials Processing of Ministry of Education, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083
引用本文:

姜雁斌, 刘新华, 王春阳, 莫永达, 谢建新. 感应加热连续退火对铜包铝复合线材再结晶组织和界面金属间化合物的影响[J]. 金属学报, 2014, 50(4): 479-488.
Yanbin JIANG, Xinhua LIU, Chunyang WANG, Yongda MO, Jianxin XIE. INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE[J]. Acta Metall Sin, 2014, 50(4): 479-488.

全文: PDF(10913 KB)   HTML
摘要: 

研究了在250~470 ℃下感应加热连续退火对冷拉拔铜包铝复合线材包覆Cu层和Al芯组织、界面层金属间化合物组成和厚度的影响, 并与传统炉式等温退火的实验结果进行了比较. 结果表明: 当感应加热温度为250 ℃时, Cu层和Al芯只发生回复现象; Cu层和Al芯分别在300和330 ℃时开始发生再结晶, 在430 ℃时均发生完全再结晶, 平均晶粒尺寸分别约为6.0和7.3 μm. 当温度为360 ℃时, Cu/Al界面形成了不连续分布的CuAl2金属间化合物; 当温度为390 ℃时, 界面形成了连续分布的CuAl2层, 430 ℃时形成了CuAl2和Cu9Al4 2种化合物层, 平均厚度分别约为0.52和0.48 μm. 进一步升高温度, Cu层和Al芯的晶粒明显长大, 界面化合物层厚度呈增大趋势. 在本工作实验条件下, 冷拉拔铜包铝复合线材合理的感应加热连续退火温度为430 ℃. 与炉式等温退火工艺相比, 感应加热连续退火方法可明显细化铜包铝复合线材Cu层和Al芯的再结晶晶粒, 显著减小界面金属间化合物层厚度.

关键词 铜包铝复合线材感应加热退火再结晶金属间化合物    
Abstract

Influences of induction heating continuous annealing (IHCA) on the microstructure of both copper sheath and aluminum core, and intermetallic compound at the Cu/Al interface of cold-drawn copper-clad aluminum wire were investigated, compared with the traditional isothermal annealing in furnace (TIA). The results showed that recovery of both the copper sheath and aluminum core happened when the temperature of IHCA was 250 ℃. Recrystallization began to occur in the copper sheath at 300 ℃ and in the aluminum core at 330 ℃, respectively. Complete recrystallization of both the copper sheath and aluminum core took place at 430 ℃, whose average grain size were 6.0 and 7.3 μm, respectively. An intermetallic compound CuAl2 discontinuously formed at the interface at 360 ℃, and continuous CuAl2 layer formed at 390 ℃. Both CuAl2 layer and Cu9Al4 layer formed at the interface at 430 ℃, with average thickness of 0.52 and 0.48 μm, respectively. With further raising the temperature, the grains of both copper sheath and aluminum core grew, and the thickness of the intermetallic compound layer increased slightly. The appropriate IHCA temperature of the cold-drawn copper-clad aluminum wire was 430 ℃. Compared with TIA, IHCA was able to not only refine recrystallized grain of both copper sheath and aluminum core remarkably, but also reduce the thickness of the interfacial intermetallic compound layer in the copper-clad aluminum wire.

Key wordscopper-clad aluminum wire    induction heating annealing    recrystallization    intermetallic compound
收稿日期: 2013-09-13     
ZTFLH:  TG146.4  
基金资助:* 国家自然科学基金项目51104016, 国家高技术研究发展计划项目2013AA030706以及中央高校基本科研业务费专项资金项目FRF-TP-12-147A, FRF-MP-10-004B和FRF-TP-12-146A资助
作者简介: null

姜雁斌, 男, 1981年生, 博士

图1  
图2  
图3  
图4  
图5  
Temperature / ℃ Intermetallic compound Atomic fraction
of Cu / %
Atomic fraction of Al / % Thickness / μm
360 CuAl2 32.6 67.4 0.20
390
CuAl2 32.2 67.8 0.40
430 CuAl2 34.8 65.2 0.52
Cu9Al4 69.7 30.3 0.48
470 CuAl2 29.3 70.7 0.64
Cu9Al4 63.1 36.9 0.58
  
Process condition Grain size / μm Thickness of intermetallic compound / μm
Copper Aluminum CuAl2 Cu9Al4 CuAl Total thickness
IHCA 430 ℃ 6.0 7.3 0.52 0.48 - 1.00
470 ℃ 7.2 12.0 0.64 0.58 - 1.22
TIA 350 ℃, 60 min 8.0 12.7 2.20 1.00 0.60 3.80
400 ℃, 60 min 10.0 17.0 2.50 1.40 1.10 5.00
450 ℃, 60 min - - 6.40 4.10 2.90 13.40
  
图6  
[1] Sasaki T T, Morris R A, Thompson G B, Syarif Y, Fox D. Scr Mater, 2010; 63: 488
[2] Kang C G, Jung Y J, Kwon H C. J Mater Process Technol, 2002; 124: 49
[3] Xu R C, Tang D, Ren X P, Wang X H, Wen Y H. Rare Met, 2007; 26: 230
[4] Wang Q N, Liu X H, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 675
[4] (王秋娜, 刘新华, 刘雪峰, 谢建新. 金属学报, 2008; 44: 675)
[5] Wang Q N, Liu X H, Liu X F, Xie J X. J Mater Eng, 2008; (7): 30
[5] (王秋娜, 刘新华, 刘雪峰, 谢建新. 材料工程, 2008; (7): 30)
[6] Lee W B, Bang K S, Jung S B. J Alloys Compd, 2005; 390: 212
[7] Hug E, Bellido N. Mater Sci Eng, 2011; A528: 7103
[8] Ying D Y, Zhang D L. J Alloys Compd, 2000; 311: 275
[9] Ouyang J, Yarrapareddy E, Kovacevic R. J Mater Process Technol, 2006; 172: 110
[10] Peng X K, Wuhrer R, Heness G, Yeung W Y. J Mater Sci, 1999; 34: 2029
[11] Chen C Y, Chen H L, Hwang W S. Mater Trans, 2006; 47: 1232
[12] Chen C Y, Hwang W S. Mater Trans, 2007; 48: 1938
[13] Markovsky P E, Semiatin S L. J Mater Process Technol, 2010; 210: 518
[14] Markovsky P E, Semiatin S L. Mater Sci Eng, 2011; A528: 3079
[15] Shang F N, Sekiya E, Nakayama Y. Mater Trans, 2011; 52: 2052
[16] Zhu X, Zhang T, Marchant D, Morris V. Mater Sci Eng, 2011; A528: 1251
[17] Luozzo N D, Fontana M, Arcondo B. J Alloys Compd, 2012; 536: 564
[18] Muljono D, Ferry M, Dunne D P. Mater Sci Eng, 2001; A303: 90
[19] Lee J B, Kang N, Park J T, Ahn S T, Park Y D, Choi D, Kim K R, Cho K M. Mater Chem Phys, 2011; 129: 365
[20] Ivasishin O M, Teliovich R V. Mater Sci Eng, 1999; A263 : 142
[21] Yang B J, Hattiangadi A, Li W Z, Zhou G F, Mcgreevy T E. Mater Sci Eng, 2010; A527: 2978
[22] Ahn S T, Kim D S, Nam W J. J Mater Process Technol, 2005; 160: 54
[23] Massardier V, Ngansop A, Fabregue D, Merlin J. Mater Sci Eng, 2010; A527: 5654
[24] The Material Information Society. ASM Handbook. Vol 3, Materials Park, Ohio: ASM International, 2005: 291
[25] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Amsterdam: Elsevier, 2004: 135
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[8] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[9] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[13] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[14] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[15] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.