Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1487-1492    DOI: 10.3724/SP.J.1037.2013.00572
  论文 本期目录 | 过刊浏览 |
冷却速率对Ti3Al合金组织和拉伸性能的影响
王震1),曹,磊1,2),刘仁慈1),刘冬1),崔玉友1),杨,锐1)
1)中国科学院金属研究所, 沈阳 110016
2)东北大学材料与冶金学院, 沈阳 110819
EFFECT OF COOLING RATE ON MICROSTRUCTURE AND TENSILE PROPERTIES IN Ti3Al ALLOY
WANG Zhen1), CAO Lei1,2), LIU Renci1), LIU Dong1), CUI Yuyou1), YANG Rui1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) College of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

王震,曹,磊,刘仁慈,刘冬,崔玉友,杨,锐. 冷却速率对Ti3Al合金组织和拉伸性能的影响[J]. 金属学报, 2013, 49(11): 1487-1492.
. EFFECT OF COOLING RATE ON MICROSTRUCTURE AND TENSILE PROPERTIES IN Ti3Al ALLOY[J]. Acta Metall Sin, 2013, 49(11): 1487-1492.

全文: PDF(4537 KB)  
摘要: 

对两相区锻造的Ti3Al合金棒材分别在1020和1150℃保温30 min,以10, 1.5和0.3℃/s速度冷至室温, 研究了冷速对Ti3Al合金组织和拉伸性能的影响.结果表明, 在1020℃固溶, 冷速为10℃/s时, 合金主要由B2相和α2相组成;降低冷速, 基体中均匀析出针状α2/O相; 冷速为0.3℃/s,等轴α2/O相体积分数增加, 针状α2/O相粗化.随着冷速下降, 合金的室温强度先升高后下降, 塑性先降低后提高;600℃拉伸强度逐渐下降, 塑性提高. 在1150℃固溶, 快速冷却时,合金主要由B2相构成, 晶粒尺寸约为440 μm; 降低冷速, 晶内均匀析出α2/O相,呈网篮状; 冷速0.3℃/s时, 基体中析出的α2/O相片层呈集束状.随着冷速下降, 室温强度下降, 而塑性先升高后降低; 600℃拉伸强度先升高后降低, 而塑性逐渐上升.结合组织分析表明, Ti3Al合金的强度取决于晶界和α2/O片层的尺寸,塑性受B2相体积分数以及α2/O相的分布及体积分数影响. 冷速为1.5℃/s时,Ti3Al合金具有良好的综合力学性能.

关键词 Ti3Al合金冷却速率显微组织拉伸性能    
Abstract

The microstructure and tensile properties in Ti3Al alloy rod by forging in the (B2+α2) region after heating at 1020 and 1150℃ for 30 min and cooling to room temperature at the cooling rates of 10, 1.5 and 0.3℃/s were investigated. The results showed that Ti3Al alloy structure was mainly composed of B2 phase and α2 phase at the cooling rate of 10℃/s after heating at 1020℃. With the decrease of cooling rate, the acicular α2/O phase homogeneously precipitated in the matrix on slow cooling. The volume fraction of equiaxed α2/O phase increased and the acicular α2/O phase was coarsed under the cooling rate of 0.3℃/s. For room temperature tensile tests, the data indicated that the strength initially increased and then decreased and the ductility firstly decreased and then increased with reducing cooling rate. During the 600℃ tensile tests, the strength decreased monotonically and ductility rose as reducing cooling rate. When solid solution temperature was 1150℃, Ti3Al alloy was mainly composed of B2 phase and the size of grain was 440 $\mu$m by fast cooling. Basketweave structure was obtained in the grain at the cooling rate of 1.5℃/s. The α2/O phase colony precipitated in the B2 phase with further reducing the cooling rate. With the decrease of cooling rate, the strength decreased gradually and ductility initially increased and then decreased at the room temperature, the 600℃ tensile strength firstly went up and then down and ductility increased. Through microstructure analysis, strength in Ti3Al alloy is controlled by boundary and the size of α2/O phase, and ductility is decided by the number of B2 phase and α2/O phase and the shape of α2/O phase. The good comprehensive properties were obtained at the cooling rate of 1.5℃/s.

Key wordsTi3Al alloy    cooling rate    microstructure    tensile property
收稿日期: 2013-09-09     
作者简介: 王震, 男, 1985年生, 博士生

[1] Dimiduk D M, Miracle D B, Ward C H.  Mater Sci Technol, 1992; 8: 367

[2] Cao C X, Ma J M, Yan M G.  Mater Eng, 1991; (2): 32
(曹春晓, 马济民, 颜鸣皋. 材料工程, 1991; (2): 32)
[3] Williams J C, Starke E A.  Acta Mater, 2003; 51: 5775
[4] Li S Q, Zhang J W, Cheng Y J, Liang X B.  Rare Met Mater Eng, 2005; 34(suppl. 3): 104
(李世琼, 张建伟, 程云君, 梁晓波. 稀有金属材料与工程, 2005; 34(增刊3): 104)
[5] Si Y F, Chen Z Y, Meng L H, Wang Z W, Chen Y Y.  Spec Cast Nonferrous Alloys, 2003; (4): 33
(司玉锋, 陈子勇, 孟丽华, 王肇文, 陈玉勇. 特种铸造及有色合金, 2003; (4): 33
[6] Sagar P K.  Mater Sci Eng, 2006; A434: 259
[7] Wang M G, Sun J K, Chen J Q.  Rare Met Lett, 2007; 26(11): 8
(王孟光, 孙建科, 陈志强. 稀有金属快报, 2007; 26(11): 8)
[8] Mishra R S, Banerjee D.  Scr Metall Mater, 1990; 24: 1477
[9] Dary F C, Thompson A W. In: Froes F H, Caplan I L, eds.,Titanium'92: Science and Technology, Warrendale,PA: The Minerals, Metals and Materials Society, 1993: 375
[10] Huang C, Loretto M H. In: Blenkinsop P A, Evans W J, Flower H M, eds.,Titanium'95: Science and Technology, London: Institute of Materials, 1996: 558
[11] Wu Y, Tang Z X, Yang D Z, Li D M.  Mater Sci Technol, 1996; 4(1): 24
(武英, 唐之秀, 杨德庄, 李明道. 材料科学与工艺, 1996; 4(1): 24)
[12] Banerjee D, Gogia A K, Nanay T K.  Acta Metall Mater, 1988; 36: 871
[13] Banerjee D, Baligidad R G, Gogia A K. In: Hemker K J, Dimiduk D M, Clemens H,Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D, eds.,Structural Intermetallics 2001, Warrendale, PA: The Minerals, Metals and Materials Society, 2001: 43
[14] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D.  Structure Intermetallics.Beijing: National Defence Industry Press, 2001: 789
(张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料.北京: 国防工业出版社, 2001: 789)
[15] Cao J X, Xu J W, Huang X.  Rare Met, 2006; 30(special issue): 13
(曹京霞, 许剑伟, 黄旭. 稀有金属, 2006; 30(专辑): 13)
[16] Cao J X, Sun Y F, Cao C X.  Rare Met, 1997; 21: 490
(曹京霞, 孙育峰, 曹春晓. 稀有金属, 1997; 21: 490)
[17] Cao J X, Xu J W.  Titanium Ind Prog, 2008; 25(1): 15
(曹京霞, 许剑伟. 钛工业进展, 2008; 25(1): 15)
[18] Xu J W, Huang X, Gao J X.  Rare Met, 2004; 28(1): 50
(许剑伟, 黄旭, 曹京霞. 稀有金属, 2004; 28(1): 50)
[19] Cao J X, He S L, Shi W M, Wang H W, Wang X.  Chin J Nonferrous Met,2010; 20(special issue 1): 207
(曹京霞, 何书林, 石为民, 王宏武, 王新. 中国有色金属学报, 2010; 20(专辑1): 207)
[20] Cao J X, Duan R, Li Z X.  Rare Met Mater Eng, 2008; 37(suppl. 3): 541
(曹京霞, 段锐, 李臻熙. 稀有金属材料与工程, 2008; 37(增刊3): 541)
[21] Cao J X, Duan R, Li Z X.  Rare Met, 2009; 33: 746
(曹京霞, 段锐, 李臻熙. 稀有金属, 2009; 33: 746)
[22] Muraleedharan K, Gogia A K, Nandy T K, Banerjee D, Lele S.  Metall Mater Trans,1992; 23A: 401
[23] Wang Y, Ma N, Chen Q, Zhang F, Chen S L, Chang Y A.  JOM, 2005; 57: 32
[24] Ward C H.  Int Mater Rev, 1993; 38: 79
[25] Gogia A K, Banerjee D, Nandy T K.  Metall Trans, 1990; 21A: 609
[26] Wu Y, Tang Z X, Yang D Z, Li D M.  Chin J Nonferrous Met, 1996; 6(3): 99

(武英, 唐之秀, 杨德庄, 李道明. 中国有色金属学报, 1996; 6(3): 99)

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[12] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[13] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.