Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 498-506    DOI: 10.3724/SP.J.1037.2013.00559
  本期目录 | 过刊浏览 |
应力松弛对应变诱发马氏体相变影响的有限元模拟*
冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华()
上海交通大学材料科学与工程学院, 上海 200240
FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION
FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua()
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
Rui FENG, Meihan ZHANG, Nailu CHEN, Xunwei ZUO, Yonghua RONG. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. Acta Metall Sin, 2014, 50(4): 498-506.

全文: PDF(3924 KB)   HTML
摘要: 

在基于新型淬火-分配-回火(Q-P-T)钢微观组织的有限元模型中, 建立了产生马氏体相变的一维应变等效模型, 模拟了单轴拉伸条件下的相变诱发塑性(TRIP)效应, 由此揭示了该效应的微观机制. TRIP效应产生的应力松弛有效地缓解了未转变的残余奥氏体和邻近马氏体的应力, 阻止了裂纹的形成, 并使较多的残余奥氏体在较大的应变下存在, 这是TRIP效应的起因; 模拟结果还显示, 相变形成的新(应变诱发)马氏体比原始(热诱发)马氏体承载更大的应力, 由此预测裂纹首先在新马氏体中或其边界处形成. 应力松弛效应使应变诱发马氏体断续缓慢地生成, 这与实验观察结果相符. 通过比较有应力松弛效应和无应力松弛效应的有限元模拟结果发现, 无应力松弛效应使应变诱发马氏体相继快速地生成, 这与实验不符, 由此反证TRIP效应必然产生应力松弛.

关键词 淬火-配分-回火(Q-P-T)钢相变诱发塑性(TRIP)有限元模拟应力松弛单轴拉伸    
Abstract

Near 50 years ago, transformation induced plasticity (TRIP) effect was proposed and TRIP steels as an advanced high strength one are widely investigated. However, the mechanism of TRIP effect can be only qualitatively explained, and has not been experimentally and theoretically verified so far. In this work, a strain equivalent model for strain-induced martensitic transformation was built in a microstructure-based finite element model of novel quenching-partitioning-tempering (Q-P-T) steel. With the model, the TRIP effect under the condition of uniaxial tension was simulated, from which the micro-mechanism of TRIP effect is revealed. Stress relaxation from TRIP relieves the stresses within untransformed retained austenite and its adjacent martensite and blocks the formation of cracks, meanwhile, a considerable retained austenite still exists at higher strain level, which is the origin of TRIP effect. Compared with original (thermal-induced) martensite, fresh (strain-induced) martensite bears higher stress. Therefore, it could be predicted that cracks form at first in fresh martensite or its boundaries. Moreover, stress relaxation makes strain-induced martensite formed in intermittent and slow way, and this is consistent with experimental results. However, in stress-free relaxation state fresh martensite appears in successive and quick way, not consistent with experiments, and thus this verifies in opposite way that TRIP effect inevitably produces stress relaxation.

Key wordsquenching-partitioning-tempering (Q-P-T) steel    transformation induced plasticity (TRIP)    finite element simulation    stress relaxation    uniaxial tension
收稿日期: 2013-09-05     
ZTFLH:  TG142  
基金资助:* 国家自然科学基金项目 51031001 和51371117资助
图1  
图2  奥氏体和原始马氏体相的流变应力-应变曲线
图3  
图 4  
图5  
图6  
图7  
图8  
图9  
图10  
[1] Zackay V F, Parker E R, Fahr D, Busch R. ASM Trans Quart, 1967; 60: 252
[2] Bhadeshia H K D H. ISIJ Int, 2002; 42: 1059
[3] Wang X D, Huang B X, Rong Y H, Wang L. J Mater Sci Technol, 2006; 22: 625
[4] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H. Metall Mater Trans, 2012; 43A: 1026
[5] Olson G B, Cohen M. Metall Trans, 1975; 6A: 791
[6] Stringfellow R G, Parks D M, Olson G B. Acta Metall Mater, 1992; 40: 1703
[7] Tomita Y, Iwamoto T. Int J Mech Sci, 2001; 43: 2017
[8] Iwamoto T, Tsuta T. Int J Plast, 2002; 18: 1583
[9] Serri J, Cherkaoui M. J Eng Mater Technol, 2008; 130: 031009-1
[10] Choi K S, Liu W N, Sun X, Khaleel M A. Acta Mater, 2009; 57: 2592
[11] Choi K S, Liu W N, Sun X, Khaleel M A. Metall Mater Trans, 2009; 40A: 796
[12] Rong Y H. Int Heat Treat Surf Eng, 2011; 5: 145
[13] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H. Mater Sci Eng, 2011; A528: 8486
[14] Uthaisangsuk V, Prahl U, Bleck W. Comp Mater Sci, 2008; 43: 27
[15] Ludwik P. Elemente der Technologischen Mechanik. Berlin: Julius Springer, 1909: 32
[16] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishers, 1978: 1
[17] Sugimoto K, Iida T, Sakaguchi J, Kashima T. ISIJ Int, 2000; 40: 902
[18] Zhang K. PhD Dissertation. Shanghai Jiao Tong University, 2011
[18] (张 柯. 上海交通大学博士学位论文, 2011)
[19] Delannay L, Jacques P, Pardoen T. Int J Solids Struct, 2008; 45: 1825
[20] Leal R H. PhD Dissertation. Massachusetts Institute of Technology, 1984
[21] Zhang W F, Zhu J H, Cao C X. Heat Treat Met, 2005; 30(2): 62
[21] (张旺峰, 朱金华, 曹春晓. 金属热处理, 2005; 30(2): 62)
[22] Muránsky O, Šittner P, Zrník J, Oliver E C. Acta Mater, 2008; 56: 3367
[23] Hsu T Y. Martensitic Transformation and Martensite. Beijing: Science Press, 1999: 147
[23] (徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1999: 147)
[24] Bhadeshia H K D H. Mater Sci Eng, 2004; A378: 34
[25] Park K K, Oh S T, Baeck S M, Kim D I, Han J H, Han H N, Park S, Lee C G. Mater Sci Forum, 2002; 408-412: 571
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[4] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[5] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[6] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[7] 何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
[8] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[9] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[10] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[11] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[12] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[13] 曹铁山, 方旭东, 程从前, 赵杰. 应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J]. 金属学报, 2014, 50(11): 1343-1349.
[14] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[15] 聂文金 尚成嘉 吴圣杰 施培建 程俊杰 张晓兵. Nb对奥氏体热变形后等温回复的影响[J]. 金属学报, 2012, 48(7): 775-781.