Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 415-422    DOI: 10.3724/SP.J.1037.2013.00556
  本期目录 | 过刊浏览 |
高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*
郭鹏程1,2, 钱立和1(), 孟江英1, 张福成1
1 燕山大学亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004
2 湖南大学汽车车身先进设计与制造国家重点实验室, 长沙 410082
MONOTONIC TENSION AND TENSION-COMPRES- SION CYCLIC DEFORMATION BEHAVIORS OF HIGH MANGANESE AUSTENITIC TWIP STEEL
GUO Pengcheng1,2, QIAN Lihe1(), MENG Jiangying1, ZHANG Fucheng1
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
引用本文:

郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.
Pengcheng GUO, Lihe QIAN, Jiangying MENG, Fucheng ZHANG. MONOTONIC TENSION AND TENSION-COMPRES- SION CYCLIC DEFORMATION BEHAVIORS OF HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. Acta Metall Sin, 2014, 50(4): 415-422.

全文: PDF(2313 KB)   HTML
摘要: 

对高锰奥氏体孪晶诱发塑性(TWIP)钢室温单向拉伸与拉压疲劳行为进行了研究. 单向拉伸和疲劳实验的应变速率均为6×10-3 s-1. 疲劳实验采取轴向总应变控制, 应变比为-1. 结果表明, 随拉伸应变的增加, 应力-应变曲线上的锯齿状塑性流动呈现出不同的特征, 具有很强的应变敏感性. 在不同应变幅下的低周疲劳实验中, 高锰奥氏体TWIP钢表现出很强的循环硬化能力. 低应变幅时表现为初始循环硬化, 随后稳定; 中等应变幅时, 表现为初始循环硬化后出现不同程度的循环软化, 然后稳定; 高应变幅时经短暂循环硬化后开始循环软化, 直至失效. 较高应变幅下循环失效后的奥氏体晶粒内产生了大量的位错、位错墙、迷宫结构以及位错胞等位错结构, 在部分晶粒内还观察到了细小的形变孪晶.

关键词 孪生诱发塑性(TWIP)钢动态应变时效应变硬化低周疲劳形变孪晶    
Abstract

Twinning-induced plasticity (TWIP) steel, having a great potential in applications in the automotive industry as a new generation of advanced steels, has attracted much attention in recent years because of the excellent combinations of strength and ductility resulting from deformation twinning. The monotonic tension behavior of TWIP steels has been extensively investigated; however, the serration behavior and low-cycle fatigue (LCF) properties have not been well understood. In order to obtain a good understanding of the mechanisms of room temperature serrated flows and the cyclic deformation behavior, the monotonic tensile deformation and fully reversed tension-compression LCF behaviors along with the deformed microstructures of an annealed TWIP steel were investigated in the present work. Both monotonic and fatigue tests were performed at room temperature with a strain rate of 6×10-3 s-1. The fatigue tests were conducted under total strain amplitude control with strain amplitudes ranging from 0.002 to 0.01. The tensile results show that the serrated plastic flows of stress-strain curves, presenting distinct characteristics at various strain levels, exhibit strong strain-level sensitivity. With increasing strain, the type A serrations featured by fine step-like flow are gradually replaced by the largely increased amplitude of type A serrations and their oscillation frequency decreases apparently; however, the frequency of type B serrations increases and the amplitude reduces slightly. The LCF fatigue results show that high cyclic hardening capacity is exhibited at all strain levels. At low strain amplitudes, the steel exhibits a very small initial cyclic hardening followed by a long saturation untill fracture. At medium strain amplitudes, a moderate initial cyclic hardening is followed by different degrees of cyclic softening depending on the applied strain amplitude, and then saturation untill fracture. At high strain amplitudes, the steel shows a rapid cyclic hardening quickly followed by softening till final fracture, almost without a saturation stage. Furthermore, at higher strain amplitudes, cyclic loading is found to lead to the generation of fine deformation twins in addition to high density of dislocation substructures, including dislocation walls and cell-like structures.

Key wordstwinning-induced plasticity (TWIP) steel    dynamic strain aging    strain hardening    low-cycle fatigue    deformation twin
收稿日期: 2013-09-05     
ZTFLH:  TG142.1  
基金资助:* 国家自然科学基金项目51171166和河北省自然科学基金项目E2011203066资助
作者简介: null

郭鹏程, 男, 1985年生, 博士生

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
[1] Allain S, Chateau J P, Bouaziz O. Mater Sci Eng, 2004; A387-389: 143
[2] Park K T, Jin K G, Han S H, Hwang S W, Choi K, Lee C S. Mater Sci Eng, 2010; A527: 3651
[3] Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O. Mater Sci Eng, 2008; A483-484: 184
[4] Jiménez J A, Frommeyer G. Mater Charact, 2010; 61: 221
[5] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141
[6] Hamada A S, Karjalainen L P, Somani M C. Mater Sci Eng, 2007; A467: 114
[7] Jin J E, Lee Y K. Acta Mater, 2012; 60: 1680
[8] Lebedkina T A, Lebyodkin M A, Chateau J P, Jacques A, Allain S. Mater Sci Eng, 2009; A519: 147
[9] Lee S J, Kim J, Kane S N, Cooman B C D. Acta Mater, 2011; 59: 6809
[10] Qian L, Guo P, Meng J, Zhang F. Mater Sci Eng, 2013; A561: 266
[11] Hamada A S, Karjalainen L P, Ferraiuolo A, Sevillano J G, Cuevas F, Pratolongo G, Reis M. Metall Mater Trans, 2010; 41A: 1102
[12] Hamada A S, Karjalainen L P. Mater Sci Eng, 2010; A527: 5715
[13] Niendorf T, Rubitschek F, Maier H J, Niendorf J, Richard H A, Frehn A. Mater Sci Eng, 2010; A527: 2412
[14] Lambers H G, Rusing C J, Niendorf T, Geissler D, Freudenberger J, Maier H J. Int J Fatigue, 2012; 41: 51
[15] Kim Y W, Kim G, Hong S G, Lee C S. Mater Sci Eng, 2011; A528: 4696
[16] Karjalainen L P, Hamada A, Misra R D K, Porter D A. Scr Mater, 2012; 66: 712
[17] Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17: 1245
[18] Kalidindi S R. Int J Plast, 1998; 14: 1265
[19] McCormick P G. Acta Metall, 1971; 19: 463
[20] Huang Z W, Yuan F H, Wang Z G, Zhu S J, Wang F G. Acta Metall Sin, 2007; 43: 1025
[20] (黄志伟, 袁福河, 王中光, 朱世杰, 王富岗. 金属学报, 2007; 43: 1025)
[21] Chen L J, Wang Z G, Yao G, Tian J F. Int J Fatigue,1999; 21: 791
[22] Renard K, Ryelandt S, Jacques P J. Mater Sci Eng, 2010; A527: 2969
[23] McCormigk P G. Acta Metall, 1972; 20: 351
[24] Wijler A, Vrijhoef M M A, Beukel A V D. Acta Metall, 1974; 22: 13
[25] Rémy L. Metall Trans, 1981; 12A: 387
[26] Hong S G, Lee S B. J Nucl Mater, 2004; 328: 232
[1] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[2] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[4] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[5] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[6] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[7] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[8] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[9] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[10] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[11] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[12] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[13] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[14] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[15] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.