Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1439-1444    DOI: 10.3724/SP.J.1037.2013.00518
  论文 本期目录 | 过刊浏览 |
β-γNb-TiAl合金准等温锻造过程模拟
郑君姿,张来启,侯永明,马向玲,林均品
北京科技大学新金属材料国家重点实验室, 北京 100083
QUASI ISOTHERMAL FORGING SIMULATION OF β-γ TiAl ALLOY CONTAINING HIGH CONTENT OF Nb
ZHENG Junzi, ZHANG Laiqi, HOU Yongming, MA Xiangling, LIN Junpin
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

郑君姿,张来启,侯永明,马向玲,林均品. β-γNb-TiAl合金准等温锻造过程模拟[J]. 金属学报, 2013, 49(11): 1439-1444.
ZHENG Junzi, ZHANG Laiqi, HOU Yongming, MA Xiangling, LIN Junpin. QUASI ISOTHERMAL FORGING SIMULATION OF β-γ TiAl ALLOY CONTAINING HIGH CONTENT OF Nb[J]. Acta Metall Sin, 2013, 49(11): 1439-1444.

全文: PDF(3138 KB)  
摘要: 

采用Deform-3D有限元软件模拟了β-γ高Nb-TiAl合金Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y(原子分数, %)的准等温锻造过程,分析了合金内部等效应力场、等效应变场、温度场的分布以及结合热压缩实验确定了该合金在特定工艺参数下的临界损伤因子.结果表明, 随应变速率的增大, 锻件的温度损失不明显, 等效应力增大,最大等效应变值增加, 变形均匀性系数下降, 工件变形更加均匀.结合模拟和实验结果, 确定了β-γ高Nb-TiAl合金在1150℃,应变速率5×10-2 s-1条件下进行包套准等温锻造过程中的临界损伤因子为0.206.

关键词 β-γNb-TiAl合金准等温锻造Deform-3D模拟等效应力应变场临界损伤因子    
Abstract

TiAl-based alloys containing high content of Nb are significantly promising for high-temperature structural applications in aerospace and automotive industries, due to their low density, excellent high temperature strength, high resistance to oxidization and creep resistance. However, poor hot workability limits their extensive applications. Owing to sufficient number of independent slip system, small deformation resistance, apt to plastic forming of disordered bccβ phase at elevated temperature, the novel β-γ TiAl with high content of Nb alloys exhibit excellent hot deformability. The quasi isothermal forging process of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy is investigated by using a Deform-3D software. The effective stress, effective strain, temperature distribution of the alloy are analyzed. In order to obtain the critical damage factor of the alloy under the condition of 1150℃ and strain rate 5×10-2s-1, the hot compression physical simulation experiment of the alloy is performed to achieve true stress-strain data. By inputting these data into the Deform-3D software to simulate the true compression process, the critical damage factor is obtained. The results demonstrate that with increase of strain rate, the temperature loss becomes less obvious, the effective stress and the maximum effective strain rises up, the deformation uniformity ratio decreases and the deformation becomes more uniform. Combined with the simulation and experiment results, the critical damage factor of the β-γ TiAl alloy containing high content of Nb is 0.206 during the quasi isothermal forging process at\linebreak 1150℃ and strain rate 5×10-2s-1.

Key wordsβ-γTiAl alloy containing high content of Nb    quasi isothermal forging    Deform-3D simulation    effective stress and strain distribution    critical damage factor
收稿日期: 2013-08-25     
基金资助:

国家重点基础研究发展计划资助项目2011CB605502

作者简介: 郑君姿, 女, 1987年生, 硕士

[1] Bystrzanowski S, Bartels A, Clemens H, Gerling R.  Intermetallics, 2008; 16: 717

[2] Wang Y H, Lin J P, Xu X J, He Y H, Wang Y L, Chen G L.  J Alloys Compd, 2008; 458: 313
[3] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L.  Mater Sci Eng, 2007; A471: 82
[4] Yan Y Q, Wang W S, Zhang Z Q, Luo G Z, Zhou L.  Mater Rev, 2000; 14: 15
(闫蕴琪, 王文生, 张振棋, 罗国珍, 周廉. 材料导报, 2000; 14: 15)
[5] Paul J D H, Appel F, Wanger R.  Acta Mater, 1998; 46: 1075
[6] Viswanathan G B, Vasudevan V K.  Scr Metall Mater, 1995; 32: 1705
[7] Zhang W J, Evangelista E, Francesconi L, Chen G L.Mater Sci Eng, 1996; A207: 202
[8] Naka S, Thomas M, Khan T.  Mater Sci Eng, 1992; 8: 291
[9] Kimura M, Hashimoto K, Morikawa H.  Mater Sci Eng, 1992; A152: 54
[10] Kim Y W.  JOM, 1989; 41(7): 24
[11] Schmoelzer T, Liss K D, Zickler G A, Watson I J, Droessler L M,Wallgram W, Buslaps T, Studer A, Clemens H.  Intermetallics, 2010; 18: 1544
[12] Chen Y Y, Zhang S Z, Kong F T, Liu Z Y, Lin J P.  Rare Met, 2012; 36: 154
(陈玉勇, 张树志, 孔凡涛, 刘祖岩, 林均品. 稀有金属, 2012; 36: 154)
[13] Tetsui T, Shindo K, Kaji S, Kobayashi S, Takeyama M.  Intermetallics, 2005; 13: 971
[14] Donald S, Kim Y W. In: Ninomi M, Akiyama S, Ikeda M, eds.,  Ti-2007 Science and Engineering,Kyoto: The Japan Institute of Metals, 2007: 1021
[15] Clemens H, Wallgram W, Kremmer S.  Adv Eng Mater, 2008; 10: 707
[16] Kim J S, Lee Y H, Kim Y W, Lee C S.  Mater Sci Forum, 2007; 539-543: 1531
[17] Li B H, Chen Y Y.  J Alloys Compd, 2009; 473: 123
[18] Niu H Z, Chen Y Y, Xiao S L, Kong F T, Zhang C J.  Intermetallics, 2011; 19: 1767
[19] Beddoes J, Chen W R.  J Mater Sci, 2002; 37: 621
[20] Xu X J, Lin J P, Wang Y L, Song X P, Lin Z, Chen G L.  Mater Sci Technol, 2007; 15: 709
(徐向俊, 林均品, 王艳丽, 宋西平, 林志, 陈国良. 材料科学与工艺, 2007; 15: 709)
[21] Komori K.  Int J Mech Sci, 2003; 45: 141
[22] Dorum C, Hopperstad O S,  Berstad T. Eng Fract Mech, 2009; 76: 2232
[23] Sowerby R, Chandtasekaran N.  Mater Sci Eng, 1986; 79: 27
[24] Xu X J.  PhD Dissertation, University of Science and Technology Beijing, 2006
(徐向俊. 北京科技大学博士学位论文, 2006)
[25] Zhang W.  PhD Dissertation, Central South University, Changsha, 2011
(张伟. 中南大学博士学位论文, 长沙, 2011)
[26] Liang X.  Int J Solids Struct, 2007; 44: 5163
[27] Su X K, Li S S, Han Y F, Li Z X, Xu X J, Xu L H, Lin J P, Chen G L.Chin J Nonferrous Met, 2004; 14: 1410

(苏喜孔, 李树索, 韩雅芳, 李臻熙, 徐向俊, 徐丽华, 林均品, 陈国良.中国有色金属学报, 2004; 14: 1410)

No related articles found!