Please wait a minute...
金属学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
电磁场对Inconel 625合金凝固组织及力学性能的影响
贾鹏,王恩刚,鲁辉,赫冀成
东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY
JIA Peng, WANG Engang, LU Hui, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
全文: PDF(3187 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

将电磁场引入到Inconel 625合金的凝固过程中,研究电磁力对合金凝固组织和力学性能的影响. 结果表明,电磁场可显著细化合金晶粒, 但当施加不合理的电流强度和频率时,电磁场会加速凝固前沿的熔体对流, 导致凝固末端产生更严重的枝晶偏析,形成更多的共晶组织. 微观表征结果表明, 电磁场作用下Nb和Mo元素偏析比的增大,是共晶组织含量增多的根本原因.晶粒细化和共晶组织增多共同影响了合金的室温拉伸性能,使合金屈服强度提高、拉伸塑性下降.合理控制电流强度及频率大小可有效控制共晶组织分数.当施加电磁场的电流强度为100 A, 频率为8 Hz时, 合金中共晶组织含量最少,合金在不损失塑性的前提下屈服强度提高30%以上.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾鹏
王恩刚
鲁辉
赫冀成
关键词 电磁场Inconel 625合金凝固组织枝晶偏析拉伸性能    
Abstract

Inconel 625 is a Ni—Cr—Mo—Nb alloy which was developed primarily for high turbine applications. The elemental addition of Nb increases the solidification temperature range, which exhibits a strong propensity to form interdendritic segregation. The enrichment of elements Nb and Mo at the terminal stage of solidification leads to the formation of brittle eutectic structure, i.e., γ+Laves phases, which becomes potential crack origin during the subsequent hot processing and application. The present work has demonstrated that, the introduction of electromagnetic field (EMF) to the solidification process of Inconel 625 alloy has the obvious effect on grain refinement. The EMF can also effectively influence the segregation ratio of Nb and Mo. However, the inappropriate application of electric current intensity and frequency will lead to more severe segregation of elements Nb and Mo, which causes the increment of eutectic structure volume fraction. Further analysis illustrates that both of the grain refinement and eutectic volume fraction control the tensile property at room temperature, increasing the yield strength and decreasing the tensile plasticity for Inconel 625 alloy. It has been proven that a proper selection of input current intensity (100 A) and frequency (8 Hz) can effectively dominate the segregation behavior during solidification process under EMF with more than 30% increase of yield strength and a minute loss of plasticity.

Key wordselectromagnetic field    Inconel 625 superalloy    solidification microstructure    interdendritic segregation    tensile property
收稿日期: 2013-08-25      出版日期: 2013-12-11
基金资助:

国家自然科学基金项目50834009和51104047, 高等学校学科创新引智计划项目B07015以及教育部科学技术研究重大项目311014

通讯作者: 王恩刚     E-mail: egwang@mail.neu.edu.cn
作者简介: 贾鹏, 女, 1980年生, 讲师, 博士
引用本文:   
贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 10.3724/SP.J.1037.2013.00509.
JIA Peng, WANG Engang, LU Hui, HE Jicheng. EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY. Acta Metall Sin, 2013, 49(12): 1573-1580.
链接本文:  
http://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00509      或      http://www.ams.org.cn/CN/Y2013/V49/I12/1573
[1] Barker J F, Cox J D, Margolin E. Met Prog, 1968; 93: 91
[2] Eiselstein H L, Tillack D J. In: Loria E A ed.,Superalloys 718,625, and Various Derivatives, Warrendale, PA: The Minerals, Metals & Materials Society, 1991: 1
[3] Yang W H, Chen W, Chang K M. In: Pollock T M ed., Superalloys 2000, Nashville: The Minerals,Metals & Materials Society, 2000: 75
[4] Cieslak M J, Headley T J, Kollie T, Romig A D. Metall Mater Trans, 1988; 19A: 2319
[5] Dupont J N. Metall Mater Trans, 1996; 27A: 3612
[6] Dong J X, Zhang M C, Zeng Y P, Xie X S. Acta Metall Sin (Engl Lett), 2005; 18: 47
[7] Guo J T. Materials Science and Engineering for Superalloys (Volume 2). Beijing: Science Press, 2008: 1
(郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2008: 1)
[8] Flemings M C. Solidification Processing. New York: McGraw—Hill, 1974: 38
[9] Flemings M C. ISIJ Int, 2000; 40: 833
[10] Xu F J, Lv Y H, Liu Y X, Shu F Y, He P, Xu B S. J Mater Sci Technol, 2013; 29: 480
[11] Moffatt H K. Phys Fluids, 1991; 3A: 1336
[12] Metana V, Eigenfelda K, R$\ddot{\rm a$bigerb D, Leonhardtb M, Eckertb S.J Alloys Compd, 2009; 487: 163
[13] Wang X D, Li T J, Jin J Z. Acta Metall Sin, 2001; 37: 971
(王晓东, 李廷举, 金俊泽. 金属学报, 2001; 37: 971)
[14] Jin W Z, Li J, Li T J, Yin G M. J Vac Sci Technol Sin, 2008; (6): 28
(金文中, 李军, 李廷举, 殷国茂. 真空科学与技术学报, 2008; (6): 28)
[15] Chang K M, Lai H J, Hwang J Y. In: Loria E A ed.,Superalloys 718,625, and Various Derivatives, Nashville: The Minerals,Metals & Materials Society, 1994: 683
[16] Schneider M C, Gu J P, Beckermann C, Boettinger W J, Kattner U R.Metall Mater Trans, 1997; 28A: 1517
[17] Cieslak M J, Knorovsky G A, Headley T J, Romig A D. In: Loria E A ed.,Superalloys 718, Nashville: The Minerals, Metals $\&$ Materials Society, 1989: 59
[18] Garabedian H, Strick—Constable R F J. J Cryst Growth, 1974; 22: 188
[19] Xin X, Huang A H, Qi F, Zhang W H, Liu F, Yang H C, Sun W R, Hu Z Q.Acta Metall Sin, 2010; 46: 873
(信昕, 黄爱华, 祁峰, 张伟红, 刘芳, 杨洪才, 孙文儒, 胡壮麒. 金属学报,2010; 46: 873)
[20] Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q. Acta Metall Sin, 2003; 39: 914
(郭大勇, 杨院生, 童文辉, 花福安, 程根发, 胡壮麒. 金属学报, 2003; 39: 914)
[21] Xiong Y H, Li P J, Yang A M, Yan W D, Zeng D B, Liu L. Acta Metall Sin, 2002, 38: 534
(熊玉华, 李培杰, 杨爱民, 严卫东, 曾大本, 刘林. 金属学报, 2002; 38: 534)
[22] Epishin A, Link T, Bruckner U, Fedelich B, Portella P. In: Green K A ed.,Superalloys 718, Nashville: The Minerals, Metals & Materials Society, 2004: 537
[23] Nader E B, Yamamoto K, Miyahara H, Keisaku O. Mater Trans, 2005; 46: 909
[24] Chen W. PhD Dissertation, West Virginia University, 2006
[25] Kaddah N E, Natarajan T T. In: Cleary P W ed.,Second International Conference on CFD in the Minerals and Process Industries, Melbourne: CSIRO, 1999: 339
[1] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[2] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[3] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[4] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[5] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[6] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[7] 毕成, 郭志鹏, LIOTTI E, 熊守美, GRANT P S. 铝合金凝固过程枝晶破碎现象的定量化研究*[J]. 金属学报, 2015, 51(6): 677-684.
[8] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
[9] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[10] 王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
[11] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[12] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[13] 赵九洲, 李璐, 张显飞. 合金凝固过程元胞自动机模型及模拟方法的发展*[J]. 金属学报, 2014, 50(6): 641-651.
[14] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[15] 高中堂, 胡锐, 王军, 杨劼人, 李金山. 电磁场下近液相线高温合金熔体处理非枝晶组织的形成[J]. 金属学报, 2014, 50(12): 1471-1477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed