Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 345-354    DOI: 10.3724/SP.J.1037.2013.00496
  本期目录 | 过刊浏览 |
DD6高温合金定向凝固枝晶生长的数值模拟研究*
张航1, 许庆彦1(), 史振学2, 柳百成1
1 清华大学材料学院先进成形制造教育部重点实验室, 北京 100084
2 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS
ZHANG Hang1, XU Qingyan1(), SHI Zhenxue2, LIU Baicheng1
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084
2 National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials,Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

张航, 许庆彦, 史振学, 柳百成. DD6高温合金定向凝固枝晶生长的数值模拟研究*[J]. 金属学报, 2014, 50(3): 345-354.
Hang ZHANG, Qingyan XU, Zhenxue SHI, Baicheng LIU. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. Acta Metall Sin, 2014, 50(3): 345-354.

全文: PDF(11790 KB)   HTML
摘要: 

采用元胞自动机-有限差分(CA-FD)方法对DD6高温合金高速凝固法(HRS, high rapid solidification)定向凝固树枝晶三维生长过程进行模拟研究. 建立温度场和溶质场耦合控制的枝晶生长模型, 考虑抽拉速率和温度梯度等凝固条件的影响, 同时考虑成分过冷、溶质分配系数、晶体择优取向等合金物性参数, 模拟研究了枝晶形态的演化过程. 模拟结果反映了高温合金树枝晶的竞争生长及形貌特征, 描述了凝固过程的溶质分布变化及枝晶间距的动态调整过程. 研究工作将模拟结果与实验结果进行了对比, 两者吻合良好. 模拟能够预测DD6高温合金HRS法定向凝固过程的枝晶形貌及一、二次枝晶间距动态调整过程.

关键词 元胞自动机DD6高温合金定向凝固枝晶生长数值模拟    
Abstract

Modern aero and power industry needs high-performance gas turbine. Directional solidification (DS) columnar grain and single crystal (SX) blade as key parts of gas turbine serve in heavy stress and high temperature conditions. The DS and SX blade are mainly produced by high rapid solidification (HRS) method, and HRS is one of useful DS technology, which has a property that the heat dissipating ways are changing during the process and the temperature gradients will vary correspondingly. The dendrite grain arrays were the substructure of a DS or SX blade. The structure of the dendrite grain arrays influences the mechanical property of the final casting very much, but is seriously affected by the solidification parameters, such as temperature gradient. In this work, the dendrite grain growth of DD6 superalloy was studied based on cellular automaton-finite difference (CA-FD) model concerning the HRS method's macro solidification parameters. Mathematic models for dendrite grain growth controlled by temperature field and solute field were built to describe the competitive growth and morphology evolution of dendrite grains. Then the dendrite calculation model was coupled with the models of DS process calculation, and some HRS solidification parameters were included, such as withdrawal rate, pouring temperature, etc. The coupled models were used to predict the dendrite grain competitive growth of DD6 superalloy during the DS process. The variation of solute distribution and the dynamic adjustment of dendritic spacing during the process could be predicted by simulating calculation. The DS experiment was carried out with a cylinder sample, and dendrite grains' distribution in the transverse and longitude section was observed by OM and SEM. Then the simulated dendritic morphology was compared with that by experiment. The primary and secondary dendritic spacing by experiment and simulation were measured, and the compared results revealed that as the DS process going on the temperature gradient decreased gradually and the primary dendritic spacing was increasing. So simulation results of the DS dendritic competitive growth were validated by the experiment results, and the proposed models could predict the dendrite grain morphology and the adjustments of DS dendritic spacing of DD6 superalloy very well.

Key wordsCA    DD6 superalloy    directional solidification    dendrite grain growth    numerical simulation
收稿日期: 2013-08-18     
ZTFLH:  TG132.3  
基金资助:*国家重点基础研究发展计划项目2011CB706801, 国家自然科学基金项目51171089及国家科技重大专项项目2011ZX04014-052和 2012ZX04012-011资助
作者简介: null

张 航, 男, 1985年生, 博士生

图1  
图2  
图3  
图4  
Parameter Unit Value
Liquidus K 1672[42]
Solidus K 1615[42]
Thermal conductivity kJ/(m·s·K) 0.0332[42]
Specific heat kJ/(kg·K) 0.773[42]
Density kg/m3 8780[42]
Latent heat kJ/kg 99[42]
Mass fraction % 39.006*
Partition 0.788*
Liquidus slope ℃/% -3.95*
Diffusion coefficient in liquid (DL) m2/s 3.6×10-9
Diffusion coefficient in solid (DS) m2/s 1.0×10-12
Gibbs -Thomson coefficient (G) k·m 3.65×10-7[17]
Anisotropy intensity coefficient (g) 0.04
表1  DD6合金的模拟用参数
图5  
图6  
图7  
图8  
图9  
图10  
Height
mm
1st arm spacing λ 1 / μm 2nd arm spacing λ 2 / μm G
K·mm-1
Exp Simul Exp Simul
10 128.1 133.6 49.4 40.1 4.77
14 206.6 196.6 62.7 49.5 4.10
18 211.0 208.4 58.8 45.5 3.30
26 223.9 201.2 57.6 51.2 2.26
表2  DD6高温合金枝晶间距的实验与模拟对比
[1] Sato A, Harada H, Yeh A, Kawagishi K. In: Reed R, Green K, Caron, Gabb T P, Fahrmann M G, Huron E S, Woodard S R eds., 11th International Symposium on Superalloys. Champion, PA: TMS, 2008: 131
[2] Kawagishi K, Yeh A, Yokokawa T, Kobayashi T, Koizumi Y, Harada H. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., 12th International Symposium on Superalloys. Seven Springs, PA: TMS, 2012: 443
[3] Shi C X, Zhong Z Y. Acta Metall Sin, 1997; 33: 1
[3] (师昌绪, 仲增墉. 金属学报, 1997; 33: 1)
[4] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281
[4] (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[5] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Oison S, Schirra J J eds., 10th International Symposium on Superalloys. Warrendale, PA: TMS, 2000: 777
[6] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43
[7] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 57: 941
[8] Karma A, Rappel W J. Phys Rev, 1998; 57E: 4323
[9] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X. J Comput Phys, 1999; 154: 468
[10] Chen L Q. Annu Rev Mater Res, 2002; 32: 113
[11] Karma A, Rappel W J. Phys Rev, 1999; 60E: 3614
[12] Folch R, Plapp M. Phys Rev, 2005; 72E: 011602
[13] Kassner K, Misbah C, Muller J, Kappey J, Kohlert P. Phys Rev, 2001; 63E: 036117
[14] Tong X, Beckermann C, Karma A, Li Q. Phys Rev, 2001; 63E: 061601
[15] Rappaz M, Gandin C A. Acta Metall Mater, 1993; 41: 345
[16] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[17] Nastac L. Acta Mater, 1999; 47: 4253
[18] Wang W, Lee P D, McLean M. Acta Mater, 2003; 51: 2971
[19] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[20] Zhu M F, Chen J, Sun G X, Hong C P. Acta Metall Sin, 2005; 41: 583
[20] (朱鸣芳, 陈 晋, 孙国雄, 洪俊杓. 金属学报, 2005; 41: 583)
[21] Liu B C, Xiong S M, Xu Q Y. Metall Mater Trans, 2007; 38B: 525
[22] Shi Y F, Xu Q Y, Gong M, Liu B C. Acta Metall Sin, 2011; 47: 620
[22] (石玉峰, 许庆彦, 龚 铭, 柳百成. 金属学报, 2011; 47: 620)
[23] Yuan L, Lee P D. Model Simul Mater Sci Eng, 2010; 18: 055008
[24] Jiang H X, Zhao J Z. Acta Metall Sin, 2011; 47: 1099
[24] (江鸿翔, 赵九洲. 金属学报, 2011; 47: 1099)
[25] Pan S, Zhu M. Acta Mater, 2010; 58: 340
[26] Shi Y F, Xu Q Y, Liu B C. Trans Nonferrerous Met Soc, 2012; 22: 2756
[27] David S A, Debroy T. Science, 1992; 257: 497
[28] Pan D, Xu Q Y, Liu B C. Acta Metall Sin, 2010; 46: 294
[28] (潘 冬, 许庆彦, 柳百成. 金属学报, 2010; 46: 294)
[29] Yu J, Xu Q Y, Cui K, Liu B C, Kimatsuka A, Kuroki A, Hirata A. J Mater Sci Technol, 2007; 23: 47
[30] Pan D, Xu Q Y, Liu B C. Sci China-Phys Mech Astron, 2011; 54: 851
[31] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P. JOM, 2010; 62(5): 30
[32] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C. Sci China-Technol Sci, 2011; 54: 3191
[33] Trivedi R, Kurz W. Int Mater Rev, 1994; 39: 49
[34] Trivedi R, Kurz W. Acta Metall Mater, 1994; 42: 15
[35] Fu H Z,Guo J J,Liu L,Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 525
[35] (傅恒志,郭景杰,刘 林,李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 525)
[36] Yu J.PhD Dissertation. Tsinghua University, Beijing, 2007
[36] (于 靖. 清华大学博士学位论文, 北京, 2007)
[37] Liang Z J. PhD Dissertation. Tsinghua University, Beijing, 2003
[37] (梁作俭. 清华大学博士学位论文, 北京, 2003)
[38] Pan D.PhD Dissertation. Tsinghua University, Beijing, 2010
[38] (潘 冬. 清华大学博士学位论文, 北京, 2010)
[39] Li L, Overfelt R A. J Mater Sci, 2002; 37: 3521
[40] Nastac L, Chou J S, Pang Y. In: Mitchell A, Ridgway L, Baldwin M eds., Proceedings of the International Symposium on Liquid Metal Processing and Casting (LMPC-1999), Warrendale, PA: TMS, 1999: 207
[41] Zou J, Doherty R, Wang H P, Perry E M, Kaisand L R. In: Piwonka T S ed., Proceedings of the Modeling of Casting, Welding and Advanced Solidification Processes-VI, Warrendale, PA: TMS, 1993: 45.
[42] Editorial Committee. Practical Handbook of Engineering Materials. 2nd Ed., Beijing: China Standards Press, 2002: 771
[42] (丛书编委会. 工程材料实用手册. 第2版, 北京: 中国标准出版社, 2002: 771)
[43] Huang W D, Geng X G, Zhou Y H. J Cryst Growth, 1993; 134: 105
[44] Lin X, Huang W D, Pan Q Y, Ding G L, Xue Y F, Zhou Y H. Acta Metall Sin, 1997; 33: 1140
[44] (林 鑫, 黄卫东, 潘清跃, 丁国陆, 薛玉芳, 周尧和. 金属学报, 1997; 33: 1140)
[45] Ding G L, Lin X, Huang W D, Zhou Y H. Acta Metall Sin, 1995; 31: 469
[45] (丁国陆, 林 鑫, 黄卫东, 周尧和. 金属学报, 1995; 31: 469)
[46] Halder E, Exner H E. Acta Metall, 1988; 36: 1665
[47] Li Q, Beckermann C. Acta Mater, 1999; 47: 2345
[48] Yoshioka H, Tada Y, Hayashi Y. Acta Mater, 2004; 52: 1515
[49] Li Q, Beckermann C. Acta Mater, 1999; 47: 2345
[50] Lu S, Hunt J D. J Cryst Growth, 1992; 123: 17
[51] Kurz W,Fisher D J,translated by Mao X M,Bao G Q. Fundamentals of Solidification. Xi'an: Northwestern Polytechnical University Press, 1987: 20
[51] (Kurz W,Fisher D J 著,毛协民,包冠乾 译. 凝固原理. 西安: 西北工业大学出版社, 1987: 20)
[52] Bouchard D, Kirkaldy J S. Metall Mater Trans, 1997; 28B: 651
[53] Hemings M C. Solidification Processing. New York: McGraw Hill, 1974: 1
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[11] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[12] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[13] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[14] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[15] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.