Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1416-1422    DOI: 10.3724/SP.J.1037.2013.00495
  论文 本期目录 | 过刊浏览 |
长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性
方璐1),丁贤飞2),张来启1),郝国建1),林均品1)
1) 北京科技大学新金属材料国家重点实验室, 北京100083
2) 北京科技大学国家材料服役安全科学中心, 北京100083
MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb-TiAl ALLOY AFTER LONG-TERM THERMAL CYCLING
FANG Lu 1), DING Xianfei2), ZHANG Laiqi1), HAO Guojian1), LIN Junpin1)
1) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
2) National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
引用本文:

方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
FANG Lu, DING Xianfei, ZHANG Laiqi, HAO Guojian, LIN Junpin. MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb-TiAl ALLOY AFTER LONG-TERM THERMAL CYCLING[J]. Acta Metall Sin, 2013, 49(11): 1416-1422.

全文: PDF(5483 KB)  
摘要: 

分别在900和1000℃下对全片层Ti-45Al-8.5Nb(W, B, Y)合金进行了长期热循环(500和1000 cyc)实验,通过光学显微镜(OM)、扫描电镜(SEM)及透射电镜(TEM)研究了该合金在不同温度长时热循环条件下的显微组织稳定性.研究表明, 合金经全片层热处理工艺后凝固偏析(Al偏析)仍未完全消除,900℃下长期热循环后Al偏析处易产生不连续粗化, 合金1000 cyc热循环后仍未发现α2相的球化;1000℃下合金长期热循环后Al偏析处易析出大块γ晶粒,合金经500 cyc热循环后沿晶界产生了许多细小的等轴γ晶粒,同时α2相在γ晶粒内球化析出. 1000 cyc热循环后晶界、晶内均有大量的等轴γ晶粒析出, 且晶粒内部有不同取向的长条状或颗粒状α2相析出;合金1000℃下长期热循环后, 长条状或颗粒状α2相从γ晶粒内沿晶面{111}γ析出, α2相与γ基体保持共格位向关系.

关键词 Nb-TiAl合金热循环热稳定性相变    
Abstract

Microstructure stability in the fully lamellar Ti-45Al-8.5Nb(W, B, Y) alloy were investigated by OM, SEM and TEM after long-term thermal cycling (500 and 1000 cyc) at 900 and 1000℃. The results showed that Al-segregation could not be eliminated completely after the heat treatment. After long-term thermal cycling at 900℃, the discontinuous coarsening was inclined to occur in the Al-segregation region in the alloy. And almost no spheroidized precipitates ofα2 were observed even after 1000 thermal cycles. After long-term thermal cycling at 1000℃, the massive γ grains were generated in the Al-segregation region. After 500 thermal cycles, the spherodized α2 precipitates were produced within γ grains which were found at colony boundaries. After 1000 thermal cycles, however, the large equiaxed γ grains containing different orientation of plate-shaped precipitates of theα2 phase were observed within the lamellar structure or at colony boundaries. After long-term thermal cycling at 1000℃, the plate-shaped or particle-shapedα2, which is coherent with the γ matrix, precipitates on the {111}γ plane in the γ grain interior.

Key wordshigh Nb-TiAl alloy    thermal cycling    thermal stability    phase transformation
收稿日期: 2013-08-19     
基金资助:

国家重点基础研究发展计划项目2011CB605500, 国家自然科学基金项目51171015,中国博士后科学基金项目2012M520166和高等学校博士学科点专项科研基金项目20120006120042资助

作者简介: 方璐, 女, 1990年生, 博士生

[1] Kim Y W.  JOM, 1995; 47: 39

[2] Wu X.  Intermetallics, 2006; 14: 1114
[3] Lin J P, Xu X J, Wang Y L, He S F, Zhang Y, Song X P, Chen G L.Intermetallics, 2007; 15: 668
[4] Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U,Mulauer J, Oehring M, Paul J D H.  Adv Eng Mater, 2000; 2: 699
[5] Zhao W Y, Pei Y L, Zhang D H, Ma Y, Gong S K, Xu H B.  Intermetallics, 2011; 19: 429
[6] Kim Y W.  J Mater Sci Technol, 1994; 10: 79
[7] Es-Souni M, Bartels A, Wagner R.  Mater Sci Eng, 1995; A192-193: 698
[8] Morris M A, Leboeuf M.  Mater Sci Eng, 1997: A239-240: 429
[9] Hu D, Godfrey A B, Loretto M H.  Intermetallics, 1998; 6: 413
[10] Ramanujan R V, Maziasz P J, Liu C T.  Acta Mater, 1996; 44: 2611
[11] Huang Z W, Voice W, Bowen P.  Intermetallics, 2000; 8: 417
[12] Cheng T T.  Intermetallics, 1999; 7: 995
[13] Huang Z W, Cong T.  Intermetallics, 2010; 18: 161
[14] Beschliesser M, Chatterjee A, Lorich A, Knabl W, Kestler H, Dehm G,Clemens H.  Mater Sci Eng, 2002; A329-331: 124
[15] Geng H B, He S Y, Lei T Q.  Acta Metall Sin, 1996; 32: 51
(耿洪滨, 何世禹, 雷廷权. 金属学报, 1996; 32: 51)
[16] Manna I, Pabi S K, Gust W.  Int Mater Rev, 2001; 46: 53
[17] Qin G, Wang J, Hao S.  Intermetallics, 1999; 7: 1
[18] Wang X P, Zheng Y R.  J Mater Eng, 2000; (7): 20
(汪小平, 郑运荣. 材料工程, 2000; (7): 20)
[19] Tang J C, Huang B Y, He Y H, Xie K.  Trans Nonferrous Met Soc China, 2000; 10: 10
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[9] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[13] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[14] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.