Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 285-293    DOI: 10.3724/SP.J.1037.2013.00490
  本期目录 | 过刊浏览 |
Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响*
王明1,2(), 马党参2, 刘振天3, 周健2, 迟宏宵2, 代建清1
1 昆明理工大学材料科学与工程学院, 昆明650093
2 钢铁研究总院特殊钢研究所, 北京100081
3 抚顺特殊钢股份有限公司, 抚顺113001
EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL
WANG Ming1,2(), MA Dangshen2, LIU Zhentian3, ZHOU Jian2, CHI Hongxiao2, DAI Jianqing1
1 College of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093
2 Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081
3 Fushun Special Steel Co., Ltd, Fushun 113001
引用本文:

王明, 马党参, 刘振天, 周健, 迟宏宵, 代建清. Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响*[J]. 金属学报, 2014, 50(3): 285-293.
Ming WANG, Dangshen MA, Zhentian LIU, Jian ZHOU, Hongxiao CHI, Jianqing DAI. EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL[J]. Acta Metall Sin, 2014, 50(3): 285-293.

全文: PDF(13665 KB)   HTML
摘要: 

利用OM, SEM, EDS, EBSD, 硬度测试及冲击韧性实验等分析手段, 对比研究H13钢和添加0.06%Nb (质量分数)H13钢 (H13-Nb) 芯棒偏析、液析碳化物、组织及力学性能. 结果表明, 与标准H13钢相比, H13-Nb中Nb加重了偏析, 导致高温扩散过程偏析未能有效改善; Nb使MC液析碳化物类型由以VC为主变成以 (V, Nb)C为主, 提高了MC液析碳化物的析出温度, 并使液析碳化物数量增加; 退火态H13-Nb的严重偏析组织在淬、回火后表现为有效晶粒尺寸较大且不均匀, 其较多的液析碳化物未减少; 在冲击实验中, 链状液析碳化物聚集的地方易产生开裂, 断口上表现为横向条纹, 导致韧性较低.

关键词 H13钢Nb偏析液析碳化物韧性    
Abstract

Mandrel is an important tool for thermal deformation of the seamless steel tube rolling unit. It requires high heat resistance and toughness due to its application in the harsh environment. H13 steel is commonly used as mandrel materials with excellent comprehensive performance. It is reported that addition of carbide-forming elements, such as Nb, Ti, or Zr, especially the Nb element, can break the dendritic microstructure and refine the cast structure of H13 steel. In addition, Nb can act as a strong carbide-forming element to favor the formation of MC carbide. This stable carbide has low solubility and does not dissolve in austenite even at high temperature, and hence fines austenite grain by pinning effect of carbide on grain boundary. As the stable NbC has stronger ability to improve the fatigue resistance and abrasion resistance than Mo6C and VC, the mandrel steel can be produced by the method of Nb addition. It has been reported that the addition of Nb in H13 can successfully increase heat resistance. Nb element dissolves into the matrix after quenching and tempering, and precipitates in the form of NbC after heat preservation for a long time, and eventually improves the resistance of material to temper softening. However, it has not been widely applied in the production because the primary carbides of NbC can seriously deteriorate toughness of steel. The purpose of the work is to analyze the effect of addition of 0.06%Nb (mass fraction) on segregation, primary carbides and toughness of large size H13 mandrel steel. The different segregation, primary carbides, structure between large size H13 and H13-Nb mandrel were investigated by employing methods of OM, SEM, EDS and EBSD, and the mechanical properties including the hardness and impact toughness were measured at room temperature. The results show that addition of 0.06%Nb aggravates segregation compared with H13. Nb increases the precipitation temperature of MC-primary carbides, and changes the type of MC-primary carbides from mainly VC to mainly (Nb, V)C which easily induces gravitational segregation of H13-Nb. The severe segregation leads to unfavorable structure of the large and nonhomogeneous effective grain size (EGS) of annealed H13-Nb, and the primary carbides do not decrease or change significantly after quenching and tempering. In the impact test, the zone of the chain-shaped carbides gathering is prone to cracking and generates horizontal stripes, resulting in low toughness.

Key wordsH13 steel    Nb    segregation    primary carbide    toughness
收稿日期: 2013-08-03     
ZTFLH:  TG142.1  
基金资助:* 国家科技支撑计划资助项目 2007BAE510B04
作者简介: null

王 明, 男, 1989年生, 硕士生

Steel C Mn Si Cr Mo V P S Nb
Standard 0.32~0.45 020~0.50 0.80~1.20 4.75~5.50 1.10~1.75 1.10~1.75 <0.025 <0.005 -
H13 0.370 0.36 1.10 5.02 1.38 1.07 0.009 0.003 -
H13-Nb 0.365 0.44 0.96 5.19 1.37 1.08 0.008 0.004 0.06
  
图1  
图2  
图3  
图4  
[1] Xie Z Y. Spec Steel Technol, 2010; 16(1): 11
[1] (谢珍勇. 特钢技术, 2010; 16(1): 11)
[2] Akiyama M, Tsubounchi K, Tsumure M. J Mater, 2000; 214(2): 61
[3] Wang S J. Steel Pipe, 1992; 27(1): 45
[3] (王士俊. 钢管, 1992; 27(1): 45)
[4] Wang X J, Xu M G, Chen Q L. Shanghai Met, 1998; 20(2): 8
[4] (王小军, 徐明纲, 陈秋龙. 上海金属, 1998; 20(2): 8)
[5] Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 197
[6] Lu Z, Faulkner R G, Riddle N, Martino F D, Yang K. J Nucl Mater, 2009; 30: 445
[7] Liu J H, Ma D S, Zhang Z P, Wu L Z, Chen Z Z, Chi H X. Spec Steel, 2008; 29(6): 55
[7] (刘建华, 马党参, 张占普, 吴立志, 陈再枝, 迟宏宵. 特殊钢, 2008; 29(6): 55)
[8] Elias C N, Da Costa Viana C S. Mater Sci Technol, 1992; 8: 785
[9] Hu X B, Li L, Wu X C. Heat Treat Met, 2004; 29(8): 13
[9] (胡心彬, 李 麟, 吴晓春. 金属热处理, 2004; 29(8): 13)
[10] Chen Y W, Wu X C, Song W W. Trans Mater Heat Treat, 2010; 31(5): 75
[10] (陈英伟, 吴晓春, 宋雯雯. 材料热处理学报, 2010; 31(5): 75)
[11] Ma D S, Zhou J, Zhang Z K, Chi H X, Chen Z Z. Iron Steel, 2010; 45(8): 80
[11] (马党参, 周 健, 张忠侃, 迟宏宵, 陈再枝. 钢铁, 2010; 45(8): 80)
[12] Lu M H, Tian Y X, Cai H Y, Yin G H. Heat Treat Met, 2010; 35(8): 9
[12] (陆明和, 田玉新, 蔡海燕, 殷光虹. 金属热处理, 2010; 35(8): 9)
[13] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Acta Metall Sin, 2010; 46: 206
[13] (迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 206)
[14] Chen Z Z,Lan D N. Die and Mould Steel Manual. Beijing: Metallurgical Industry Press, 2002: 378
[14] (陈再枝,蓝德年. 模具钢手册. 北京: 冶金工业出版社, 2002: 378)
[15] Zhou J, Ma D S, Liu B S, Kang A J, Li X Y. Res Iron Steel, 2012; (4): 47
[15] (周 健, 马党参, 刘宝石, 康爱军, 李向阳. 钢铁研究, 2012; (4): 47)
[16] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541
[16] (缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)
[17] Wang C F. PhD Dissertation, Central Iron & Steel Research Institute, Beijing, 2008
[17] (王春芳. 钢铁研究总院博士学位论文, 北京, 2008)
[18] Qi J J,Huang Y H,Zhang Y. Microalloyed Stee. Beijing: Metallurgical Industry Press, 2006: 37
[18] (齐俊杰,黄运华,张 跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 37)
[19] Li H Y, Hu J D, Li Y H. Trans Mater Heat Treat, 2012; 33(1): 122
[19] (李红英, 胡继东, 李阳华. 材料热处理学报, 2012; 33(1): 122)
[20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 343
[20] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 343)
[21] Hackl G. PhD Dissentation, University of Leoben, 1991
[22] Shi R X, Yang R C, Yin Y S, Zhou C H. Res Iron Steel, 2004; (2): 34
[22] (师瑞霞, 杨瑞成, 尹衍升, 周春华. 钢铁研究, 2004; (2): 34)
[23] Mahnken R, Schneidt A, Antretter T. Int J Plasticity, 2009; 25(2): 183
[24] Dong J X, Zhang M C, Zeng Y P. J Univ Sci Technol Beijing, 2005; 27: 197
[24] (董建新, 张麦仓, 曾燕屏. 北京科技大学学报, 2005; 27: 197)
[25] Liu D R, Sang B G, Kang X H, Li D Z. Acta Phys Sin, 2009; 58(6): 104
[25] (刘东戎, 桑宝光, 康秀红, 李殿中. 物理学报, 2009; 58(6): 104)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[5] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[6] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[9] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[12] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[13] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[14] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[15] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.