Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 337-344    DOI: 10.3724/SP.J.1037.2013.00485
  本期目录 | 过刊浏览 |
二元双相Cu-Cr合金在700和800 ℃空气中的氧化行为研究*
潘太军1,2(), 贺云翔1, 李杰1, 张保1
1 常州大学材料科学与工程学院, 常州 213164
2 常州市先进金属材料重点实验室, 常州 213164
OXIDATION BEHAVIOR OF BINARY Cu-Cr ALLOYS IN AIR AT 700 AND 800 ℃
PAN Taijun1,2(), HE Yunxiang1, LI Jie1, ZHANG Bao1
1 Department of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 Key Laboratory of Advanced Metallic Materials of Changzhou City, Changzhou 213164
引用本文:

潘太军, 贺云翔, 李杰, 张保. 二元双相Cu-Cr合金在700和800 ℃空气中的氧化行为研究*[J]. 金属学报, 2014, 50(3): 337-344.
Taijun PAN, Yunxiang HE, Jie LI, Bao ZHANG. OXIDATION BEHAVIOR OF BINARY Cu-Cr ALLOYS IN AIR AT 700 AND 800 ℃[J]. Acta Metall Sin, 2014, 50(3): 337-344.

全文: PDF(12382 KB)   HTML
摘要: 

研究了二元Cu-Cr合金Cu-0.5Cr, Cu-7.0Cr和Cu-15.0Cr (原子分数, %)在700和800 ℃空气中的高温氧化行为. 合金的氧化动力学基本遵循抛物线规律, 其中Cu-0.5Cr合金的氧化近似于纯Cu的氧化行为, 氧化产物主要为Cu的氧化物, Cr2O3颗粒弥散分布于氧化膜内层靠近膜/基体界面; Cu-7.0Cr和Cu-15.0Cr氧化后外层形成CuO和Cu2O, 内层为Cr2O3和Cu2O·Cr2O3混合氧化物, 并含有部分未氧化的Cr颗粒. 合金的氧化速率随Cr含量的增加而降低, 并且β相尺寸减小也利于提高Cu-Cr合金的抗氧化能力. 合金氧化膜结构和生长规律与合金的原始显微组织和β相分布状态有关.

关键词 Cu-Cr合金氧化抛物线定律晶粒尺寸    
Abstract

The ability to form external chromia scales on binary Cu-Cr alloys with very small mutual solubility of the two components is strongly increased either by increasing Cr content or by preparing alloys with a very small grain size. The purpose of the present work is to mainly examine the effect of Cr content and especially the influence of the size of the second phase. Equal channel angular pressing (ECAP) was carried out for the grain refinement because it can often provide significant inner deformation and very fine grains. The oxidation behavior of binary Cu-Cr alloys with different nominal Cr contents (Cu-0.5Cr, Cu-7.0Cr and Cu-15.0Cr, atomic fraction, %) was investigated in air at 700 and 800 ℃. At the same time, the oxidation of grain-refined Cu-7.0Cr alloy was compared with the same casting alloy with a normal grain size in order to further reveal the effect of the grain refinement on the oxidation. The oxidation kinetics of all alloys followed the parabolic law. Oxidation of Cu-0.5Cr alloy was basically similar to that of pure Cu and its scales are mainly composed of copper oxides containing a small amount of chromia particles dispersed in the inner layer, even close to the scale/alloy interface. The oxide scales formed on the Cu-7.0Cr and Cu-15.0Cr alloys were complex and were consisted in most cases of the outer layer of CuO and Cu2O plus inner layer of mixed oxides of chromia and double Cu-Cr oxide of Cu2O·Cr2O3, leaving unoxidized Cr particles surrounded by chromia in the scales. Cr depletion was also observed in the alloy. The grain-refined Cu-Cr alloy easily formed more chromia with much lower oxidation rate. The oxidation rate of Cu-Cr alloys decreased considerably with increasing Cr content and reduction in size of β phase is favorable for improvement of anti-oxidation of Cu-Cr alloys. The result indicates that the alloy microstructure affects the oxidation behavior because microcrystalline structures provide numerous diffusion path for reactive Cr component, shorter diffusion distance and rapid dissolution of Cr-riched second phase. All of these favor the formation of the stable chromia. Therefore, it can be deduced that the growth law and microstructure of the oxide scales for the binary alloy are closely related to the reactive component contents, original microstructure, the size and spatial distribution of β phase in Cu-Cr alloys.

Key wordsCu-Cr alloy    oxidation    parabolic law    grain size
收稿日期: 2013-08-10     
ZTFLH:  TG171  
基金资助:* 国家自然科学基金项目51101023和常州市科技项目CZ20120018资助
作者简介: null

潘太军, 男, 1977年生, 教授, 博士

图1  
图2  
图3  
Alloy 700 ℃ 800 ℃
Initial Average Initial Average
CA Cu-0.5Cr 4.75×10-10 8.01×10-9 9.90×10-9 3.23×10-8
CA Cu-7.0Cr 4.70×10-10 5.61×10-9 4.54×10-9 3.48×10-8
GR Cu-7.0Cr 2.21×10-10 3.45×10-9 5.31×10-9 1.64×10-8
CA Cu-15.0Cr 1.42×10-10 9.59×10-10 1.41×10-8 2.17×10-8
表1  Cu-Cr 合金在空气中700 和800 ℃氧化的抛物线速率常数
图4  
[1] Dou Z H, Zhang Y A, He J C, Jiang X L. Mater Rev, 2005; 19(10): 63
[1] (豆志河, 张延安, 赫冀成, 蒋孝丽. 材料导报, 2005; 19(10): 63)
[2] Wang S Y, Gesmundo F, Wu W T, Niu Y. Scr Mater, 2006; 54: 1563
[3] Zhang K, Niu Y, Li Y S, Wu W T. Rare Met Mater Eng, 2004; 33: 1287
[3] (张 轲, 牛 焱, 李远士, 吴维弢. 稀有金属材料与工程, 2004; 33: 1287)
[4] Wang S Y, Pan T J, Wang S, Niu Y. High Temp Mater Proc, 2006; 25: 225
[5] Fu G Y, Niu Y, Wu W T. Acta Metall Sin, 1998; 34: 159
[5] (傅广艳, 牛 焱, 吴维弢. 金属学报, 1998; 34: 159)
[6] Fu G Y, Niu Y, Wu W T. Chin J Nonferrous Met, 2000; 10: 32
[6] (付广艳, 牛 焱, 吴维弢. 中国有色金属学报, 2000; 10: 32)
[7] Fu G Y, Niu Y, Wu W T, Guan H R. Trans Nonferrous Met Soc Chin, 2001; 11: 333
[8] Gesmundo F, Viani F, Niu Y, Douglass D L. Oxid Met, 1993; 40: 373
[9] Gesmundo F, Niu Y, Viani F. Oxid Met, 1995; 43: 379
[10] Niu Y, Gesmundo F, Viani F, Rizzo F, Monteiro M J. Corros Sci, 1996; 38: 193
[11] Niu Y, Gesmundo F, Viani F, Douglass D L. Oxid Met, 1997; 48: 357
[12] Huang Z P, Peng X, Wang F H. Acta Metall Sin, 2006; 42: 290
[12] (黄忠平, 彭 晓, 王福会. 金属学报, 2006; 42: 290)
[13] Niu Y, Wang S Y, Gesmundo F. Oxid Met, 2006; 65: 285
[14] Ma J, He Y D, Gao W, Wang J, Sun B D. Mater Sci Eng, 2008; A488: 311
[15] Muñoz-Morris M A, Valdés León K, Caballero F G, Morris D G. Scr Mater, 2012; 67: 806
[16] Xu C Z, Wang Q J, Zheng M S, Zhu J W, Li J D, Huang M Q, Jia Q M, Du Z Z. Mater Sci Eng, 2007; A459: 303
[17] Gu X L, Ye Y F, Tian Q H, Cheng Y F, Shi L D. Mater Mech Eng, 2006; 30(3): 51
[17] (顾小兰, 叶以富, 田秋红, 程勇锋, 施利旦. 机械工程材料, 2006; 30(3): 51)
[18] Li T F. High-temperature Oxidation and Hot Corrosion of Metals. Beijing: Chemical Industry Press, 2003: 178
[18] (李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2003: 178)
[19] Fu G Y, Su Y, Liu Q, Cai L, Zhang H L. Rare Met Mater Eng, 2007; 36(suppl 3): 259
[19] (付广艳, 苏 勇, 刘 群, 蔡 璐, 张宏亮. 稀有金属材料与工程, 2007; 36(增刊 3): 259)
[20] Liang Y J,Che Y C. Handbook of Thermodynamic Data of Inorganic Compounds. Shenyang: Northestern University Press, 1993: 1
[20] (梁英教,车荫昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 1)
[21] Fu G Y, Niu Y, Wu W T. Acta Metall Sin, 2003; 39: 297
[21] (付广艳, 牛 焱, 吴维弢. 金属学报, 2003; 39: 297)
[22] Zhang X J, Gao C X, Sun L, Wang S J. Rare Met Mater Eng, 2008; 37: 1078
[22] (张学军, 高春香, 孙 伶, 王淑菊. 稀有金属材料与工程, 2008; 37: 1078)
[23] Cao Z Q, Niu Y, Wu W T. Acta Metall Sin, 2000; 36: 647
[23] (曹中秋, 牛 焱, 吴维弢. 金属学报, 2000; 36: 647)
[24] Fu G Y, Niu Y, Wu W T. Acta Metall Sin, 2001; 37: 1079
[24] (付广艳, 牛 焱, 吴维弢. 金属学报, 2001; 37: 1079)
[25] Cao Z Q, Niu Y, Wu W T. Rare Met Mater Eng, 2003; 32: 1016
[25] (曹中秋, 牛 焱, 吴维弢. 稀有金属材料与工程, 2003; 32: 1016
[26] Myung J S, Lim H J, Kang S G. Oxid Met, 1999; 51: 79
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[9] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[10] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[11] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[12] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[13] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[14] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[15] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.