Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 121-128    DOI: 10.3724/SP.J.1037.2013.00476
  论文 本期目录 | 过刊浏览 |
42CrMo钢车轮锻件在淬火过程中的残余应力研究*
李永奎, 陈俊丹, 陆善平()
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING
LI Yongkui, CHEN Jundan, LU Shanping()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
Yongkui LI, Jundan CHEN, Shanping LU. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. Acta Metall Sin, 2014, 50(1): 121-128.

全文: PDF(9175 KB)   HTML
摘要: 

针对42CrMo钢车轮内部裂纹及表面剥落问题, 进行了成分测试、裂纹宏观及微观的观察与分析. 建立了无缺陷和含疏松缺陷的车轮锻件淬火过程的热力耦合有限元模型, 获得了车轮在淬火过程中产生的残余应力场. 结果表明, 车轮内部疏松缺陷是淬火过程中疏松区域内产生应力集中的主要原因, 疏松区域尺寸对于应力集中最大值没有影响; 淬火工艺导致车轮内部缺陷区域产生非常高的周向应力, 使疏松区域产生裂纹, 但其扩展到疏松区域外的可能性不大, 而靠近车轮外表面边缘处的缺陷经过淬火后, 疏松区域内外载荷叠加效应将导致剥落现象发生.

关键词 42CrMo钢表面剥落淬火疏松缺陷有限元模拟    
Abstract

42CrMo steel, a typical low alloy medium carbon structural steel, is widely used in important structural components that require high strength, plasticity and toughness, such as crane weight-on-wheel, automobile crank shaft, locomotive gear hub, oil drill pipe joints of deep well, fishing tools and so on, for its good harden ability, high temperature strength, good creep resistance and little quenching deformation. The wheels of the polar crane that used in the Chinese third generation nuclear power plant are made of steel 42CrMo. However, cracks and surface peeling normally occur after heat treatment at quenching process of wheel forgings. There is important application background and practical significance to research the effect of the heat treatment process on the microstructures and mechanical properties and the influence of porosity defects inside the forging wheel on the heat treatment process. Large numbers of research work had been focused on segregation and heat treatment process for solving this matter in passing days. This work aims to study the effects of thermal residual stress on porosity defect in a wheel, and explain the reason for cracking and surface feeling in the way of mechanical behavior during quenching. A wheel with surface peeling was analyzed by measuring chemical compositions, macro- and micro-crack observation. Random testing position for mechanical compositions showed that the effects of segregation was small in the wheel. A set of tests and measurements for thermal mechanical properties of 42CrMo steel were conducted from room temperature to 850 oC. FEM models containing porosity defects in different sizes and without defects were constructed by Abaqus for studying the residual stresses during quenching in fully coupled temperature-displacement analysis. Simulation results indicate that the porosity defects in wheel cause stress concentration within themselves. The maximum residual stress is not affected by the length of porosity region. The hoop residual stress in porosity region in the wheel due to quenching process is in the highest level and believed to be the driving force of cracks. According to the stress distribution in the wheel, the cracks caused by the hoop residual stress can not propagate out of the defects region too far. While the assumptions of surface peeling of wheel are concluded due to combined influence of the residual stress and external loads when the defects region emerges near the wheel surface border in view of the current simulation.

Key words42CrMo steel    surface peeling    quenching    porosity defect    finite element method
收稿日期: 2013-08-05     
ZTFLH:  TG157  
基金资助:*辽宁省科学技术计划资助项目2010224008
作者简介: null

李永奎, 男, 1977年生, 副研究员, 博士

图1  
Model Symmetry Position of defect Size in axis
mm
Distance among of
porosity / mm
Number of element
Model-0 1/4 symmetric model


14 mm to inner surface of wheel model


0 0 216240
Model-10 10 1.5 129514
Model-50 50 1.5 231372
Model-80 80 1.5 348603
Model-10ma
1/2 symmetric model At margin of wheel model 10 1.5 121274
  
图2  
图3  
图4  
Temperature

Elastic modulus
105 MPa
Poisson's
ratio
Specific heat
Jkg-1-1
Thermal
expansion
10-6 -1
Thermal conductivity
Wm-1-1
20 2.08 0.29 - - -
100 2.05 0.29 546 11.9 35.1
200 1.98 0.29 563 12.5 35.1
300 1.91 0.30 580 12.9 35.1
400 1.85 0.30 631 12.9 35.2
500 1.78 0.30 720 13.3 34.9
600 1.68 0.31 730 13.6 32.0
700 1.53 0.31 795 13.9 27.9
800 1.32 0.32 539 10.6 21.1
900 1.11 0.34 588 12.0 24.2
1000 1.04 0.34 591 13.0 24.5
  
图5  
图6  
图7  
图8  
图9  
图10  
图11  
图12  
图13  
[1] Li B. Master Thesis, Shanghai Jiaotong University, 2007
[1] (李 波. 上海交通大学硕士学位论文, 2007)
[2] Gong B Z.Hoisting Conveying Mach, 2002; (2): 9
[2] (宫本智. 起重运输机械, 2002; (2): 9)
[3] Zhang Q F.Hoisting Conveying Mach, 2011; (3): 26
[3] (张全福. 起重运输机械, 2011; (3): 26)
[4] Quan G Z, Li G S, Chen T, Wang W X, Zhang Y W, Zhou J. Mater Sci Eng, 2011; A528: 4643
[5] Holzapfel H, Schulze V, Vӧhringer O, Macherauch E.Mater Sci Eng, 1998; A248: 9
[6] Sarioglu F.Mater Sci Eng, 2001; A315: 98
[7] Lin Y C, Chen M S, Zhong J. Mech Res Commun, 2008; 35: 142
[8] Liu D Z, Li T F, Yang H.Heat Treat Technol Equip, 2008; 29(3): 74
[8] (刘多智, 李廷峰, 杨 慧. 热处理技术与装备, 2008; 29(3): 74)
[9] Gu J J, Qin Y Q, Chen Z L, Lu Q H.Hot Working Technol, 2010; 39(22): 160
[9] (顾俊杰, 秦优琼, 陈志林, 卢庆华. 热加工工艺, 2010; 39(22): 160)
[10] Chu J H, Liu S Y.Heavy Castings Forgings, 2007; (4): 6
[10] (褚锦辉, 刘时雨. 大型铸锻件, 2007; (4): 6)
[11] Wang M L, Wang J, Wang L X.Bearing, 2009; (12): 37
[11] (王明礼, 王 建, 王丽霞. 轴承, 2009; (12): 37)
[12] Li J, Chen Z W, Liu D K.Heavy Castings Forgings, 2000; (4): 25
[12] (李 进, 陈增武, 刘定坤. 大型铸锻件, 2000; (4): 25)
[13] Wang X T, Yao Y L, Shao T H.Acta Metall Sin,1990; 26: 40
[13] (王笑天, 姚引良, 邵谭华. 金属学报, 1990; 26: 40)
[14] Dhua S K, Ray A, Sarma D S. Mater Sci Eng, 2001; A318: 197
[15] Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882
[15] (刘东雨, 徐 鸿, 杨 昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882 )
[16] Gao G H, Zhang H, Bai B Z.Acta Metall Sin, 2011; 47: 513
[16] (高古辉, 张 寒, 白秉哲. 金属学报, 2011; 47: 513)
[17] Zhang C Y, Wang Q F, Ren J X, Li R X, Wang M Z, Zhang F C, Yan Z S.Mater Des, 2012; 36: 220
[18] Zhang P, Zhang F C, Wang T S.Acta Metall Sin, 2011; 47: 1038
[18] (张 朋, 张福成, 王天生. 金属学报, 2011; 47: 1038)
[19] Wang R F, Xu K, Xue G.Hot Work Technol, 2007; 36(16): 43
[19] (王仁甫, 徐 科, 薛 钢. 热加工工艺, 2007; 36(16): 43)
[20] Bakhtiari R, Ekrami A.Mater Sci Eng, 2009; A525: 159
[21] Jiang W C, Gong J M, Chen H, Tu S D. Acta MetallSin, 2008; 44: 105
[21] (蒋文春, 巩建明, 陈 虎, 涂善东. 金属学报, 2008; 44: 105)
[22] Cao P Z, Liu G Z, Wu K.Int J Mater Mech Eng, 2012; (1): 16
[23] Yang X W, Zhu J C, Nong Z S, Lai Z H, He D.Comput Mater Sci, 2013; 69: 396
[24] Caner Simsir, Hakan Gur C.J Mater Process Technol, 2008; 207: 211
[25] Simulia Abaqus User Manual Version 6. 10, 2009
[26] Chen J D, Mo W L, Wang P, Lu S P.Acta Metall Sin, 2012; 48: 1186
[26] (陈俊丹, 莫文林, 王 培, 陆善平. 金属学报, 2012; 48: 1186)
[27] Cheng B S, Xiao N M, Li D Z, Li Y Y.Acta Metall Sin, 2012; 48: 696
[27] (程柏松, 肖纳敏, 李殿中, 李依依. 金属学报, 2012, 48: 696)
[28] Yin Z X, Yu W C, Yao G, Yang Z G, Li S X, Ma C X.Iron Steel, 2002; 37(10): 52
[28] (尹志新, 于维成, 姚 戈, 杨振国, 李守新, 马常祥. 钢铁, 2002; 37(10): 52)
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[4] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[6] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[7] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[8] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[9] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[10] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[11] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[12] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[13] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[14] 张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.
[15] 戎咏华,陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9.