Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 71-78    DOI: 10.3724/SP.J.1037.2013.00474
  论文 本期目录 | 过刊浏览 |
Nb-Ti-Co氢分离合金近共晶点处的显微组织及其渗氢性能*
闫二虎, 李新中(), 唐平, 苏彦庆, 郭景杰, 傅恒志
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY
YAN Erhu, LI Xinzhong(), TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

闫二虎, 李新中, 唐平, 苏彦庆, 郭景杰, 傅恒志. Nb-Ti-Co氢分离合金近共晶点处的显微组织及其渗氢性能*[J]. 金属学报, 2014, 50(1): 71-78.
Erhu YAN, Xinzhong LI, Ping TANG, Yanqing SU, Jingjie GUO, Hengzhi FU. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY[J]. Acta Metall Sin, 2014, 50(1): 71-78.

全文: PDF(9786 KB)   HTML
摘要: 

探寻了Nb-Ti-Co氢分离合金的共晶点成分并利用Bridgman定向凝固实验对其进行验证, 研究了近共晶点处9种合金的显微组织、氢渗透性能及氢脆现象, 并与贵金属Pd的氢渗透性能进行比较. 结果表明, Nb-Ti-Co三元合金中完全由共晶Nb(Ti, Co)+TiCo相构成的合金成分为Nb31Ti35Co34; 当Bridgman定向凝固实验的抽拉速率为5 μm/s时, 共晶组织中的2相呈现出规则的共生生长. 9种合金中完全由共晶相构成的合金在673.5 K具有最大的氢渗透系数2.7×10-8 mol/(m·s·Pa0.5), 是相同条件下Pd的氢渗透系数的1.72倍; Nb含量相同时, 随着Ti/Co比值的降低, 氢渗透系数逐渐减小. 氢渗透过程中, 合金膜内部的初生TiCo相作为裂纹源首先萌生裂纹, 而后以此发生二次裂纹现象并逐渐向膜边缘扩展; 当TiCo相体积分数小于5%时, 共晶Nb(Ti, Co)+TiCo相抵消原有初生TiCo相上的裂纹源, 使得合金膜具有良好的抗氢脆性能.

关键词 Nb-Ti-Co合金显微组织氢渗透系数氢脆    
Abstract

Because of the high hydrogen permeability and high resistance to hydrogen embrittlement of Pd-based alloys, Pd-Ag alloys have been used as hydrogen permeation membranes for separation and purification of hydrogen gas. However, Pd is too expensive for large-scale industrial applications as hydrogen permeation membranes. The development of alternative membrane materials with higher hydrogen purification efficiency and lower cost is therefore strongly desired. From the viewpoint of the hydrogen permeability, some bcc metals such as Nb, V and Ta are promising candidates since their predicted hydrogen permeability are larger than that of Pd. Nb-Ti-Co ternary alloy has been considered as the best candidate because of lower cost, good thermal stability, the high hydrogen permeability and high resistance to hydrogen embrittlement. In this work, the eutectic composition in Nb-Ti-Co alloy was probed and verified through Bridgman directional solidification experiment. Microstructures, hydrogen permeation properties and hydrogen embrittlement of near eutectic Nb-Ti-Co alloy were investigated and compared with those of pure Pd. The results indicate that the eutectic composition in Nb-Ti-Co alloy is Nb31Ti35Co34, and its solidification microstructures contain only the Nb(Ti, Co) and TiCo phase, which shows regular coupled growth by Bridgman directional solidification at the rate of 5 μm/s. The eutectic alloy shows the higher hydrogen permeability of 2.7×10-8 mol/(m·s·Pa0.5) at 673.5 K, which is 1.72 times higher than that of Pd alloy. The hydrogen permeability decreases with the decrease of Ti/Co ratio at the same Nb content. A slight crack first appears in the TiCo phase, which is the source of cracks in the membrane, and then the cracks propagate along the edge of the membrane. When the volume fraction of TiCo phase is less than 5%, the eutectic Nb(Ti, Co)+TiCo phases may offset the crack in the TiCo phase, thus the membrane exhibits large resistance to the hydrogen embrittlement.

Key wordsNb-Ti-Co alloy    microstructure    hydrogen permeability    hydrogen embrittlement
收稿日期: 2013-08-05     
ZTFLH:  TG139  
基金资助:* 国家自然科学基金项目51274077, 51271068和中央高校基本科研业务费专项资金项目HIT.NSRIF.2013002资助
作者简介: null

闫二虎, 男, 1986年生, 博士生

图1  
图2  
图3  
Position Nb Ti Co
1 6 45 49
2 31 37 32
3 79 18 3
4 26 38 36
表1  图3对应位置处的Nb-Ti-Co合金凝固组织EDS测试结果
图4  
图5  
图6  
图7  
图8  
[1] Hydrogen Association. Hydrogen Technology. Beijing: Science Press, 2009: 1
[1] (氢能协会. 氢能技术. 北京: 科学出版社, 2009: 1)
[2] Xu J A. Fuel Cell Technologies. Beijing: Chemical Industry Press, 2004: 1
[2] (徐静安. 燃料电池技术. 北京: 化学工业出版社, 2004: 1)
[3] Sun Y,Su W,Zhou L. Hydrogen Fuel. Beijing: Chemical Industry Press, 2005: 1
[3] (孙 艳,苏 伟,周 理. 氢燃料. 北京: 化学工业出版社, 2005: 1)
[4] Xiong L Y, Liu S, Wang L B, Rong L J.Acta Metall Sin, 2008; 44: 781
[4] (熊良银, 刘 实, 王隆宝, 戎利建. 金属学报, 2008; 44: 781)
[5] Shimpo Y, Yamaura S I, Okouchi H, Nishida M, Kajita O, Kimura H, Inoue A.J Alloys Compd, 2004; 372: 197
[6] Zhang Y, Ozaki T, Komaki M, Nishimura C.J Membrane Sci, 2003; 224: 81
[7] Paglieri S N, Way J D.Sep Purif Methods, 2002; 31(1): 1
[8] Hashi K, Ishikawa K, Matsuda T, Aoki K.J Alloys Compd, 2004; 368: 215
[9] Hashi K, Ishikawa K, Matsuda T, Aoki K. J Alloys Compd, 2005; 404-406: 273
[10] Luo W M, Ishikawa K, Aoki K.Int J Hydrogen Energy, 2012; 37: 12793
[11] Hashi K, Ishikawa K, Matsuda T, Aoki K.J Alloys Compd, 2006; 425: 284
[12] Kang H J, Su Y Q, Liu D M, Guo J J, Fu H Z.Intermetallics, 2012; 23: 32
[13] Liu D M, Li X Z, Su Y Q, Guo J J, Fu H Z.Intermetallics, 2011; 19: 175
[14] Su Y Q, Liu D M, Li X Z, Guo J J, Fu H Z.J Cryst Growth, 2010; 312: 2441
[15] Xiong L Y, Liu S, Rong L J.Int J Hydrogen Energy, 2010; 35: 1643
[16] Awakura Y, Nambu T, Matsumoto Y, Yukawa H.J Alloys Compd, 2011; 509S: S877
[17] Luo W, Ishikawa K, Aoki K. J Alloys Compd, 2008; 460: 353
[18] Wang W, Ishikawa K, Aoki K.J Membrane Sci, 2010; 351: 65
[19] Song G, Kellam M E, Liang D, Dolan M D.J Membrane Sci, 2010; 363: 309
[20] Ozaki T, Zhang Y, Komaki M, Nishimura C.Int J Hydrogen Energy, 2003; 28: 1229
[21] Hashi K, Ishikawa K, Matsuda T, Aoki K.Mater Trans, 2005; 46: 1026
[22] Arantes D R, Huang X Y, Marte C, Kirchheim R.Acta Metall Mater, 1993; 41: 3215
[23] Uchida H T, Kirchheim R, Pundt A.Scr Mater, 2011; 64: 935
[24] Deutges M, Knorr I, Borchers C, Volkert C A, Kirchheim R.Scr Mater, 2013; 68: 71
[25] Kishida K, Yamaguchi Y, Tanaka K, Inui H, Tokui S, Ishikawa K, Aoki K.Intermetallics, 2008; 16: 88
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.