Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1347-1355    DOI: 10.3724/SP.J.1037.2013.00472
  论文 本期目录 | 过刊浏览 |
高性能NiAl共晶合金JJ­­—3
袁超,周兰章,李谷松,郭建亭
中国科学院金属研究所, 沈阳 110016
CHARACTERISTICS OF A NiAl EUTECTIC ALLOY JJ—3 WITH EXCELLENT PROPERTIES
YUAN Chao, ZHOU Lanzhang, LI Gusong, GUO Jianting
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

袁超,周兰章,李谷松,郭建亭. 高性能NiAl共晶合金JJ­­—3[J]. 金属学报, 2013, 49(11): 1347-1355.
YUAN Chao, ZHOU Lanzhang, LI Gusong, GUO Jianting. CHARACTERISTICS OF A NiAl EUTECTIC ALLOY JJ—3 WITH EXCELLENT PROPERTIES[J]. Acta Metall Sin, 2013, 49(11): 1347-1355.

全文: PDF(3070 KB)  
摘要: 

JJ—3合金是具有中国自主知识产权的高性能NiAl共晶合金. 本文介绍了JJ—3合金的成分与组织特点,评述了JJ—3合金的物理、力学、化学性能及工艺特性. 在保持NiAl合金特有的密度低、熔点和导热率高、抗高温氧化性能优异的基础上, JJ—3合金高温持久性能已达到定向凝固高温合金水平.JJ—3合金具有良好的可焊性和铸造性能, 已浇铸出形状复杂的叶片.JJ—3合金优异的综合性能为NiAl合金的工程化应用提供了基础,但其室温塑性低的缺点尚待进一步突破.

关键词 NiAl合金共晶组织综合性能    
Abstract

A new NiAl eutectic alloy JJ—3 with excellent comprehensive properties had been successfully developed in China for the potential vanes materials. In this paper, the study results on alloy JJ—3, including the composition, microstructure characteristics, physical, mechanical and chemical properties, and process technologies have been introduced briefly. On the basis of maintaining the low density, the higher melting point and thermal conductivity, the excellent oxidation resistance being peculiar to NiAl alloy, alloy JJ—3 have good high temperature stress—rupture strength, which are almost as the same as those of the advanced directionally solidified superalloys. Meanwhile, alloy JJ—3 possess good weldability and castability, and had already been cast the vanes with the complicated shape. With the excellent comprehensive properties, alloy JJ—3 is very close to practical engineering application, only if the poor ductility at room temperature must be improved in the future.

Key wordsNiAl alloy    eutectic microstructure    comprehensive property
收稿日期: 2013-08-07     
作者简介: 袁超, 男, 1966年生, 副研究员

[1] Darolia R.  JOM, 1991; 43: 44

[2] Noebe R D, Bowman R R, Nathal M V.  Int Mater Rev, 1993; 38: 193
[3] Darolia R, Walston W S, Nathal M V. In: Kissinger R D, Deye D J, Anton D L,Cetel A D, Nathal M V, Pollock T M, Woodford D A eds.,  Superalloys 1996. Warrendale PA: TMS, 1996: 561
[4] Guo J T.  Order Intermetallic Compound NiAl. Beijing: Science Press, 2003: 1
(郭建亭. 有序金属间化合物镍铝合金. 北京: 科学出版社, 2003: 1)
[5] Cotton J D, Noebe R D, Kaufman M J. In: Doralia R, Liu C T, Martin P L eds.,Int Symp on Structure Intermetallics, Warrendale PA: TMS, 1993: 513
[6] Guo J T, Ren W L, Zhou J.  Acta Metall Sin, 2002; 38: 667
(郭建亭, 任维丽, 周健. 金属学报, 2002; 38: 667)
[7] Whittenberger J D, Gaydosh D J, Kumar K S.  J Mater Sci, 1990; 25: 2771
[8] Guo J T, Xing Z P.  J Mater Res, 1997; 12: 1083
[9] Hollad S, dahmen C, Buhrig—Polaczek A. In: Reed R C, Green K A, Caron P,
Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds.,  Superalloys 2008. Warrendale PA:TMS, 2008: 229
[10] Johnson D R, Chen X F, Oliver B F, Noebe R D, Whittenberger J D.Intermetallics, 1995; 3: 99
[11] Guo J T, Cui C Y, Chen Y X, Li D X, Ye H Q.  Intermetallics, 2001; 9: 287
[12] Bei H, George E P.  Acta Mater, 2005; 53: 69
[13] Guo J T, Xie Y, Sheng L Y, Zhou L Z, Liang Y C.  Intermetallics, 2011; 19: 206
[14] Zhou L Z, Guo J T.  Scr Metall, 1999; 42: 139
[15] Guo J T, Du X H, Zhou L Z.  J Mater Sci Forum, 2005; 475—479: 749
[16] Shang Z, Shen J, Zhang J F, Fu H Z.  Mater Rev, 2011; 25(9): 1
(商昭, 沈军, 张建飞, 傅恒志. 材料导报, 2011; 25(9): 1)
[17] Chen R S, Guo J T, Yin W M, Zhou J Y.  Scr Metall, 1999; 40: 209
[18] Guo J T, Du X H, Zhou B D.  Intermetallics, 2002; 10: 435
[19] Guo J T, Wang Z S, Sheng L Y, Zhou L Z, Yuan C, Chen Z G, Song L.Prog Nat Sci—Mater Int, 2012; 22: 414
[20] Cui C Y, Guo J T, Qi Y H, Ye H Q.  Metall Mater Trans, 2001; 42: 1700
[21] High Temperature Material Division, Chinese Metal Society.  China Superalloys Handbook. Beijing:China Standard Press, 2012: 1
(中国金属学会高温材料分会. 中国高温合金手册. 北京: 中国标准出版社, 2012: 1)
[22] Xu C M, Guo J T, Yang F B.  Acta Metall Sin, 2001; 37: 857
(徐春梅, 郭建亭, 杨福宝. 金属学报, 2001; 37: 857)
[23] Xu C M, Guo J T.  Acta Metall Sin, 2002; 38: 673
(徐春梅, 郭建亭. 金属学报, 2002; 38: 673)
[24] Guo J T, Zhang S Z, Yuan C, Zhou W L, Li G S.  J Aero Mater, 2003; 23(suppl): 34
(郭建亭, 张仕臻, 袁超, 周文龙, 李谷松. 航空材料学报, 2003; 23(suppl): 34)
 [25] Ren W L, Guo J T, Li G S, Wu J S.  Mater Lett, 2005; 59: 1533
 [26] Sheng L Y, Guo J T, Ye H Q.  Mater Des, 2009; 30: 964
[1] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[2] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[3] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[4] 陈正, 杨亚楠, 陈强, 许军峰, 唐跃跃, 刘峰. 过冷Fe82B17Si1合金的再辉效应模拟及组织演化*[J]. 金属学报, 2014, 50(7): 795-801.
[5] 李小飞,郭喜平. 定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化[J]. 金属学报, 2013, 49(7): 853-862.
[6] 侯介山,周兰章,郭建亭,袁超. NiAl合金超塑性的人工神经网络预测[J]. 金属学报, 2013, 49(11): 1333-1338.
[7] 赵朋 李双明 傅恒志. 定向凝固Al-40%Cu合金三维微观组织重构及共晶间距演变[J]. 金属学报, 2012, 48(1): 33-40.
[8] 肖璇 谢亿 郭建亭. 定向凝固NiAl-Cr(Mo)-Hf(Ho)共晶合金的组织与性能[J]. 金属学报, 2010, 46(6): 701-707.
[9] 全琼蕊 李双明 傅恒志. 凝固速率跃迁对定向凝固Al-40%Cu过共晶合金初生Al2Cu相的影响[J]. 金属学报, 2010, 46(4): 500-505.
[10] 谢亿; 郭建亭; 周兰章; 梁永纯; 叶恒强 . 微量Sc对NiAl二元合金及NiAl-28Cr-6Mo共晶合金显微组织和力学性能的影响[J]. 金属学报, 2008, 44(5): 529-534 .
[11] 崔传勇; 郭建亭; 齐义辉; 叶恒强 . 定向凝固NiAl-28Cr-5.8Mo-0.2Hf合金的高温拉伸蠕变行为[J]. 金属学报, 2002, 38(4): 342-346 .
[12] 巴发海; 沈宁福 . 快速凝固Ni-Al合金中的组成相[J]. 金属学报, 2001, 37(8): 845-851 .
[13] 郭建亭; 崔传勇 . 定向凝固NiAl合金的微观组织和高温力学性能Ⅰ.微观组织和韧脆转变温度[J]. 金属学报, 2000, 36(11): 1139-1143 .
[14] 崔传勇; 郭建亭 . 定向凝固NiAl合金的微观组织和高温力学性能Ⅱ.高温力学性能和界面[J]. 金属学报, 2000, 36(11): 1144-1148 .
[15] 李斌;张修睦;沙宪伟;李依依. NiAl合金相变伪弹性的分子动力学模拟[J]. 金属学报, 1998, 34(9): 923-927.