Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1333-1338    DOI: 10.3724/SP.J.1037.2013.00455
  论文 本期目录 | 过刊浏览 |
NiAl合金超塑性的人工神经网络预测
侯介山,周兰章,郭建亭,袁超
中国科学院金属研究所, 沈阳 110016
APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS
HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

侯介山,周兰章,郭建亭,袁超. NiAl合金超塑性的人工神经网络预测[J]. 金属学报, 2013, 49(11): 1333-1338.
HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao. APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS[J]. Acta Metall Sin, 2013, 49(11): 1333-1338.

全文: PDF(2216 KB)  
摘要: 

利用人工神经网络研究了不同化学成分NiAl合金超塑性变形的条件.建立了以化学成分、应变速率和温度等为输入参数的标准多层负反馈神经网络,利用挤压态NiAl及NiAl系合金数据库对网络进行了训练和测试. 研究了NiAl及添加P,Mo, Fe, Y, Ce, Nb, Cr和Hf元素的NiAl系合金在超塑性拉伸实验中,合金元素对超塑性延伸率的影响以及变形温度、应变速率等对延伸率的影响. 为了获得期望的结果,神经网络模型对输入参量、数据库和隐含层神经元个数进行了优化. 测试结果表明,神经网络的多元相关系数为0.93.利用模型预测并得出优化后的NiAl及NiAl系合金化学成分以及可以获得的最大延伸率以及最佳实验条件范围.

关键词 NiAl合金超塑性人工神经网络    
Abstract

Chemical composition, grain size, and processing conditions such as temperature and strain rate have important influence on superplasticity of NiAl alloys, which would allow the optimization of these parameters in order to achieve the desired combination of properties. In this work, the optimal superplastic deformation conditions of NiAl alloys were studied by using artificial neural networks (ANN). The standard multilayer feedforward networks were trained and tested using comprehensive datasets from previous experimentally works on the as-extruded NiAl, NiAl-25Cr, NiAl-20Fe-Y(Ce), NiAl-30Fe-Y, NiAl-9Mo, NiAl-P alloys.Different effects are modeled, including the influence of the alloying elements on the superplastic, and the influence of deformation temperature, strain rate and grain size on the elongations during the superplastic tensile tests. The artificial neural network models are combined with computer programmers for optimization of the inputs in order to achieve desirable combination of outputs. Good performances of the neural networks  are achieved. Results of this research propose a range of strain rate and temperature within which the NiAl alloy possesses superplasticity with larger elongations, although the deformation temperature and strain rate of superplastic alloys alternately influence each other within the range. These models are convenient and powerful tools for practical applications in superplastic prediction in NiAl alloys.

Key wordsNiAl alloy    superplasticity    artificial neural network
收稿日期: 2013-07-29     
基金资助:

国家自然科学基金资助项目50801060

作者简介: 侯介山, 男, 1973年生, 副研究员

[1] Chen R S, Guo J T, Yin W M, Zhou J Y.  Acta Metall Sin, 1998; 34: 1121

(陈荣石, 郭建亭, 殷为民, 周继杨. 金属学报, 1998; 34: 1121)
[2] Du X H, Guo J T, Zhou B D.  Acta Metall Sin, 2001; 37: 144
(杜兴蒿, 郭建亭, 周彼德. 金属学报, 2001; 37: 144)
[3] Zhou W L, Guo J T, Chen R S, Zhou J Y.  Acta Metall Sin, 1999; 35: 995
(周文龙, 郭建亭, 陈荣石, 周继杨. 金属学报, 1999; 35: 995)
[4] Zhou W L, Guo J T, Chen R S, Zhou J Y.  Acta Metall Sin, 2000; 36: 796
(周文龙, 郭建亭, 陈荣石, 周继杨. 金属学报, 2000; 36: 796)
[5] Du X H, Guo J T, Zhou B D.  Acta Metall Sin, 2001; 37: 1112
(杜兴蒿, 郭建亭, 周彼德. 金属学报, 2001; 37: 1112)
[6] Qi Y H, Guo J T, Cui C Y.  Chin J Nonferrous Met, 2002; 12: 2
(齐义辉, 郭建亭, 崔传勇. 中国有色金属学报, 2002; 12: 2)
[7] Sundar R S, kitazono K, Sato E.  Acta Metall Mater, 1998; 46: 5663
[8] Noebe R D, Walstan W S. In: Nathal M V, Darolia R, Liu C T, Martin P L,Miracle D B, Wagner R, Yamaguchi M eds.,  Structural Intermetallics 1997.New York: TMS, 1997: 573
[9] Chen R S, Guo J T, Yin W M, Zhou J Y.  Scr Mater, 1998; 40: 209
[10] Zhou W L, Guo J T, Chen R S, Zhou J Y.  Mater Lett, 2001; 47: 3
[11] Du X H, Guo J T, Zhou B D.  Scr Mater, 2001; 45: 69
[12] Li D Q, Liu Y, Shan A D, Lin D L.  Acta Metall Sin, 1996; 32: 417
(郦定强, 刘毅, 单爱党, 林栋梁. 金属学报, 1996; 32: 417)
[13] Lin D L, Li D Q, Liu Y.  Intermetallics, 1998; 6: 243
[14] Guo J T, Du X H, Zhou L Z, Zhou B D, Qi Y H, Li G S.  J Mater Res, 2002; 17: 121
[15] Frommeyer G, Kowalski W, Rablbauer R.  Metall Mater Trans, 2006; 37A: 3511
[16] Imayev R M, Kaibyshev O A, Salishchev G A.  Acta Metall Mater, 1992; 40: 581
[17] Lin D L, Li D Q, Liu Y.  Intermetallics, 1998; 6: 243
[18] Hu J, Lin D L.  Mater Lett, 2004; 58: 1297
[19] Jiang D M, Lin D L.  J Mater Sci Lett, 2002; 21: 505
[20] Sun J, He Y H, Wu J S.  Mater Sci Eng, 2002; A329: 885
[21] Guo J T.  Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 231
(郭建亭. 有序金属间化合物镍铝合金. 北京: 科学出版社, 2003: 231)
[22] Gupta R K, Mehta R, Agarwala V, Pant B, Sinha P P.  Int J Aerosp Eng, 2011: 874375
[23] Malinov S, Sha W.  Mater Sci Eng, 2004; A365: 202
[24] Malinov S, Sha W, McKeown J J.  Comput Mater Sci, 2001; 21: 375
[25] Yue Z F, Lu Z Y, Zheng C Q.  Acta Metall Sin, 1995; 31: 370
(岳珠峰, 吕振宇, 郑长卿. 金属学报, 1995; 31: 370)
[26] Li J W, Peng Z F.  Acta Metall Sin, 2004; 40: 257
(李军伟, 彭志方. 金属学报, 2004; 40: 257)
[27] Mackay D J C.  Neural Comput, 1992; 4: 415
[28] Gui Z L, Chen L J.  J Mater Eng, 1994; (10): 22
(桂忠楼, 陈立江. 材料工程, 1994; (10): 22)
[29] Liu H W, Wang Q F, Guo P, Liu L.  J Iron Steel Res, 2003; 15: 630
(刘汉武, 王勤峰, 郭鹏, 刘林. 钢铁研究学报, 2003; 15: 630)

[30] Guo Z, Sha W.  Comput Mater Sci, 2004; 29: 12

[1] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[2] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
[3] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[4] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[5] 付明杰, 韩秀全, 吴为, 张建伟. Ti-23Al-17Nb合金板材超塑性研究*[J]. 金属学报, 2014, 50(8): 955-961.
[6] 马品奎, 宋玉泉. 超塑性自由胀形的双目立体视觉测量研究*[J]. 金属学报, 2014, 50(4): 471-478.
[7] 管志平,马品奎,宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49(8): 1003-1011.
[8] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
[9] 袁超,周兰章,李谷松,郭建亭. 高性能NiAl共晶合金JJ­­—3[J]. 金属学报, 2013, 49(11): 1347-1355.
[10] 曹富荣 丁桦 王昭东 李英龙 管仁国 崔建忠. 超轻β固溶体Mg-11Li-3Zn合金的准超塑性与变形机理[J]. 金属学报, 2012, 48(2): 250-256.
[11] 王刚 徐磊 王永 郑卓 崔玉友 杨锐. 高Nb-TiAl合金高温塑性变形行为及微观组织演化[J]. 金属学报, 2011, 47(5): 587-593.
[12] 曹富荣 管仁国 丁桦 李英龙 周舸 崔建忠. 超轻α固溶体基Mg-6Li-3Zn合金的位错蠕变[J]. 金属学报, 2010, 46(6): 715-722.
[13] 肖璇 谢亿 郭建亭. 定向凝固NiAl-Cr(Mo)-Hf(Ho)共晶合金的组织与性能[J]. 金属学报, 2010, 46(6): 701-707.
[14] 宋玉泉 马品奎 管志平. 超塑性非球面自由胀形的测量[J]. 金属学报, 2010, 46(1): 1-5.
[15] 张寒 白秉哲 方鸿生. 预变形对低合金高碳钢超塑性变形行为的影响[J]. 金属学报, 2009, 45(9): 1106-1110.