Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 305-312    DOI: 10.3724/SP.J.1037.2013.00443
  本期目录 | 过刊浏览 |
电沉积纳米孪晶Ni中五次孪晶的电子显微分析*
单海权1, 张跃飞1(), 毛圣成1, 张泽2
1 北京工业大学固体微结构与性能研究所, 北京 100124
2 浙江大学材料科学与工程系, 杭州 310058
ELECTRON MICROSCOPY STUDY OF FIVE-FOLD TWINS IN ELECTRODEPOSITED NANO-TWIN Ni
SHAN Haiquan1, ZHANG Yuefei1(), MAO Shengcheng1, ZHANG Ze2
1 Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124
2 Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058
引用本文:

单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
Haiquan SHAN, Yuefei ZHANG, Shengcheng MAO, Ze ZHANG. ELECTRON MICROSCOPY STUDY OF FIVE-FOLD TWINS IN ELECTRODEPOSITED NANO-TWIN Ni[J]. Acta Metall Sin, 2014, 50(3): 305-312.

全文: PDF(12956 KB)   HTML
摘要: 

通过直流电沉积技术制备具有高密度纳米孪晶结构的Ni, 并对该材料中存在的五次孪晶结构进行了深入系统的电子显微分析. 获得了纳米孪晶Ni中五次孪晶结构的HRTEM图像和SAED花样; 研究了单个晶粒内部五次孪晶的结构特性、分布规律. 结果表明, 五次孪晶是由5个{111}晶体旋转组成, 五次旋转孪晶产生的7.35°本征间隙至少由五次孪晶中的2个孪晶界分担; 而且分担间隙的孪晶界呈现宽化现象, 并且分解为新的孪晶, 导致五次孪晶晶粒在整体形状上不具有五次对称性, 呈现出一定的不规则形状. TEM截面形貌分析表明, 电沉积纳米孪晶Ni呈现{110}面平行样品表面织构, 晶粒为柱状晶分布, 柱状生长方向为[110]. 通过综合结构表征, 给出了五次孪晶在三维空间的结构模型.

关键词 电沉积纳米孪晶Ni显微结构透射电镜(TEM)五次孪晶    
Abstract

The nanocrystalline Ni thin films with high density nano-scale growth twins were synthesized by direct electrodeposition technology. The five-fold twinning structure in electrodeposited nano-twin Ni was systematically investigated by TEM. The remarkable diffraction pattern and HRTEM images obtained from the cross-section observation demonstrate directly that the electrodeposited nano-twin Ni has five-fold twinning structure with five {111} twinned subcrystals and systematically analyzed the 7.35° intrinsic structural gap. In this work, the 7.35°gap was at least inset in two twin boundaries of the five-fold twin, the twin boundaries which share the 7.35° gap always broaden and was decomposed into other twins, so that, the grain present a irregular shape. cross-sectional TEM micrograph revealed that the electrodeposited nano-twin Ni had columnar grain structure with a strong {110} texture. By means of comprehensive structure characterization, a new space structural model of the five-fold twin was proposed.

Key wordselectrodeposition    nanao-twin Ni    microstructure    transmission electron microscopy (TEM)    five-fold twin
收稿日期: 2013-07-25     
ZTFLH:  TG146.15  
基金资助:* 国家自然科学基金项目11374027和51001003, 以及北京市教委重点基金项目KZ201010005002资助
作者简介: null

单海权, 男, 1986年生, 硕士生

图1  
图2  
图3  
图4  
图5  
图6  
[1] Hermann C. Z Kristallogr, 1931; 79: 186
[2] Segall R L. J Met, 1957; 9: 50
[3] Melmed A J, Hayward D O. J Chem Phys, 1959; 31: 545
[4] Zhu Y T, Liao X Z, Valiev R Z. Appl Phys Lett, 2005; 86: 103112
[5] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[6] Cao A J, Wei Y G. Appl Phys Lett, 2006; 89: 041919
[7] Shao Y F, Wang S Q. Scr Mater, 2010; 62: 419
[8] Huang P, Dai G Q, Wang F, Xu K W, Li Y H. Appl Phys Lett, 2009; 95: 203101
[9] Bringa E M, Farkas D, Caro A, Wang Y M, McNaney J, Smith R. Scr Mater, 2008; 59: 1267
[10] Lucadamo G, Medlin D L, Yang N Y C, Kelly J J, Talin A A. Philos Mag, 2005; 85: 2549
[11] Sun Y G, Ren Y, Liu Y Z, Wen J G, Okasinski J S, Miller D J. Nat Commun, 2012; 3: 971
[12] Narayan J, Srivatsa A R, Ravi K V. Appl Phys Lett, 1989; 54: 1659
[13] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 249
[14] Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Angew Chem Int Ed, 2009; 48: 60
[15] Marks L D. Rep Prog Phys, 1994; 57: 603
[16] Hofmeister H. Cryst Res Technol, 1998; 33: 1
[17] Hofmeister H. Encyclopedia Nanosci Nanotechnol, 2003; 3: 431
[18] Li Q, Shao M W, Zhang S Y, Liu X M, Li G P, Jiang K, Qian Y T. J Crystal Growth, 2002; 243: 327
[19] Fu X, Jiang J, Zhang W Z, Yuan J. Appl Phys Lett, 2008; 93: 043101
[20] Chen H Y, Li J Q, Gao Y, Xie S S. Chin Electro Microsc Soc,2005; 24: 1
[21] Cheng Y H, Zhang Y F, Mao S C, Han X D, Zhang Z. Acta Metall Sin, 2012; 48: 1342
[21] (成宇浩, 张跃飞, 毛圣成, 韩晓东, 张 泽. 金属学报, 2012; 48: 1342)
[22] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[23] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[24] Hsiao H Y, Liu C M, Lin H W, Liu T C, Lu C L, Huang Y S, Chen C, Tu K N. Science, 2012; 336: 1007
[25] Qu S X, Wang G M, Zhou H F, Huang Z L. Comput Mater Sci, 2011; 50: 1567
[26] Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[27] Zhou G D,Guo K X. Electron Diffraction of Crystals and Quasicrystals. Beijing: Beijing University Press,1999: 222
[27] (周公度,郭可信. 晶体和准晶体的衍射. 北京: 北京大学出版, 1999: 222)
[28] Ino S, Ogawa S. J Phys Soc Jpn, 1967; 22: 1365
[29] Li N, Wang J, Zhang X, Misra A. JOM, 2011; 63(9): 62
[30] Gryaznov V G, Kaprelov A M, Heydenreich J. Cryst Res Technol, 1999; 34: 1901
[31] Amblard J, Epelboin I, Froment M, Maurin G. J Appl Electrochem, 1979; 9: 233
[1] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[2] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[3] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[4] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[5] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[6] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[7] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[8] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
[9] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[10] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[11] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[12] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.
[13] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[14] 李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波. 电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响[J]. 金属学报, 2013, 49(6): 745-750.
[15] 李祥亮,陈江华,刘春辉,冯佳妮,王时豪. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响[J]. 金属学报, 2013, 49(2): 243-250.