Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 1-10    DOI: 10.3724/SP.J.1037.2013.00393
  论文 本期目录 | 过刊浏览 |
不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*
贺宏1, 李静媛1(), 秦丽雁2, 王一德1, 房菲1
1 北京科技大学材料科学与工程学院, 北京 100083
2 太原钢铁(集团)有限公司, 太原 030002
MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES
HE Hong1(), LI Jingyuan1, QIN Liyan2, WANG Yide1, FANG Fei1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Taiyuan Iron & Steel (Group) Co. Ltd., Taiyuan 030002
引用本文:

贺宏, 李静媛, 秦丽雁, 王一德, 房菲. 不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*[J]. 金属学报, 2014, 50(1): 1-10.
Hong HE, Jingyuan LI, Liyan QIN, Yide WANG, Fei FANG. MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES[J]. Acta Metall Sin, 2014, 50(1): 1-10.

全文: PDF(17483 KB)   HTML
摘要: 

研究了0Cr32Ni7Mo4N双相不锈钢热轧后冷轧和直接冷轧的成形性能, 分析了室温下α相和γ相的塑性变形机制以及经过热轧、冷轧及固溶处理后的组织演变规律, 并测试了2种成形工艺冷轧板热处理后的力学性能和耐蚀性能, 分别采用OM和SEM观察金相和腐蚀形貌. 结果表明: 实验钢在热轧后板边部开裂, 切边后经热处理再冷轧, 成形性良好; 铸态钢坯经过1100 ℃固溶处理后直接冷轧, 成形性能与其相当. 室温下α相的变形机制为多系滑移形成位错胞状结构, γ相为单系滑移和机械孪晶; 冷轧板随着热处理温度升高, 组织变得更均匀, 析出物颗粒数量减少; 直接冷轧的钢板经热处理后, 抗拉强度达到1082.9 MPa, 延伸率为29.3%, 在3.5%NaCl溶液中临界点蚀电位为1060 mV, 经过65%HNO3溶液腐蚀后失重率为0.05 g/(m2·h), 与常规热轧加冷轧后的钢板相当.

关键词 不锈钢成形工艺固溶处理组织耐蚀性能    
Abstract

Duplex stainless steels consist of a two phase microstructure involving α-ferrite and γ-austenite. These alloys have a remarkable combination of mechanical properties together with good corrosion resistance under critical working conditions and are suitable for marine and petro-chemical applications. However, the poor hot workability of these materials makes the industrial processing of flat products particularly critical. Many investigations focus on the mechanisms and behaviors of hot deformation on these materials. Several factors are frequently reported give rise to hot cracking: phase proportions, size and morphology of both phases, softening mechanisms in constituting phases, microstructural evolution during hot work, and strain partitioning between α and γ. On the contrary, few studies have been carried on cold rolling performance. Hot cracking should be avoid during forming process of duplex stainless steel, the more effective way of manufacturing in such materials is also needs research. In this work, the formability of 0Cr32Ni7Mo4N duplex stainless steel was studied in the hot rolling and directly cold rolling processes. The deformation mechanism of α and γ phase at room temperature, the microstructure evolution after hot rolling, cold rolling and solution treatment were investigated. Mechanical properties and corrosion resistance of two kinds of cold-rolled sheets were tested. The metallography and corrosion morphology were observed by OM and SEM. The results show that cracks emerged along the edge of hot-rolled plate even it was reheated three times, and it has good cold rolling formability after cutting edge of the plate. On the other hand the as-cast billet solution-treated at 1100 ℃ has good cold rolling performance. Deformation mechanism of α phase at room temperature is that multi-slip system form dislocation cell structure, while single slip model and mechanical twins appear in γ phase. As the temperature of heat-treatment raised, microstructure became more homogeneous and the amount of precipitate particles decreased. The experimental results show that the tensile strength of cold-rolled sheet after heat-treatment reaches 1082.9 MPa and the elongation is 29.3%. Critical pitting potential of the specimen in 3.5%NaCl liquor is 1060 mV; weight loss after intergranular corrosion in 65%HNO3 solution is 0.05 g/(m2·h).

Key wordsstainless steel    forming process    solution treatment    microstructure    corrosion resistance
收稿日期: 2013-07-10     
ZTFLH:  TG337.5  
基金资助:* 国家自然科学基金项目51174026和十二五国家科技支撑计划项目2012BAE04B02资助
作者简介: null

贺 宏, 男, 1988年生, 硕士生

Steel C Si Mn P S Cr Ni Mo N Fe
0Cr32Ni7Mo4N 0.079 0.15 1.0 0.014 0.005 31.05 6.64 3.88 0.53 Bal.
SAF 3207 HD ≤0.030 ≤0.8 ≤1.50 ≤0.035 ≤0.010 32.00 7.00 3.50 0.50 Bal.
  
图1  
Forming process H0 / mm T1 / ℃ H1 / mm T2 / ℃ t / min δ / % H2 / mm
No.1 20 1250 6 1250 30 80 1.2
No.2 6 1100 30 80 1.2
No.3 6 1250 30 80 1.2
No.4 6 80 1.2
  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
Forming process T / ℃ σs / MPa σb / MPa δ / %
No.1

1040 859.2 1105.1 17.9
1100 813.4 1078.3 24.5
1140 799.4 1046.1 27.5
No.2

1040 846.7 1084.7 24.4
1100 808.9 1086.3 24.3
1140 806.2 1082.9 29.3
Standard 1040~1140 ≥770 ≥950 ≥15
  
图9  
图10  
Forming process Eb
mV
m1
g·m-2·h-1
m2
g·m-2·h-1
m3
g·m-2·h-1
No.1 1060 0 0 0.04
No.2 1060 0 0 0.05
  
[1] Sato Y S, Nelson T W, Sterling C J, Steel R J, Pettersson C O.Mater Sci Eng, 2005; A397: 376
[2] Han Y, Zou D N, Chen Z Y, Fan G W, Zhang W.Mater Charact, 2011; 62: 198
[3] Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, Maza H. Mater Charact, 2008; 59: 447
[4] Silva E M, Albuquerque V H C, Leite J P, Varela A C G, Moura E P D, Tavares J M.Mater Sci Eng, 2009; A516: 126
[5] Chai G C, Kivisakk U, Tokaruk J, Eidhagen J.Stainless Steel World, 2009; (03): 27
[6] Pinol-Juez A, Iza-Mendia A, Gutierrez I.Metall Mater Trans, 2000; 31A: 1671
[7] Martin G, Yerra S K, Bréchet Y, Véron M, Mithieux J, Chéhab B, Delannay L, Pardoen T.Acta Mater, 2012; 60: 4646
[8] Fang Y L, Liu Z Y, Song H M, Jiang L Z.Mater Sci Eng, 2009; A526: 128
[9] Jorge A M, Reis G S, Balancin O.Mater Sci Eng, 2011; A528: 2259
[10] Qin Y F, Jiang L Z, Song H M, Zhang W, Hu J C, Jin X J.J Iron Steel Res, 2010; 22(8): 45
[10] (秦焰锋, 江来珠, 宋红梅, 张 伟, 胡锦程, 金学军. 钢铁研究学报, 2010; 22(8): 45)
[11] Marinelli M C, Degallaix S, Alvarez-Armas I.Mater Sci Eng, 2006; A435: 305
[12] Farnoush H, Momeni A, Dehghani K, Mohandesi J A, Keshmiri H. Mater Des, 2010; 31: 220
[13] Fan G W, Liu J, Han P D, Qiao G J.Mater Sci Eng, 2009; A515: 108
[14] Bartali A, Evrard P, Aubin V, Heren U, Alvarez-Armas I, Armas A F, Degallaix-Moreuil S.Proc Eng, 2010; 2: 2229
[15] Wang S T, Yang K, Shan Y Y, Li L F.Acta Metall Sin, 2007; 43: 171
[15] (王松涛, 杨 柯, 单以银, 李来风. 金属学报, 2007; 43: 171)
[16] Nibur K A, Bahr D F.Scr Mater, 2003; 49: 1055
[17] Song R B, Xiang J Y, Hou D P.J Univ Sci Technol Beijing, 2013; 35: 55
[17] (宋仁伯, 项建英, 侯东坡. 北京科技大学学报, 2013; 35: 55)
[18] Xiang H L, Huang W L, Liu D, He F S.Acta Metall Sin, 2010; 46:304
[18] (向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[19] Weisbrodt-Reisch A, Brummer M, Hadler B, Wolbank B, Werner E A.Mater Sci Eng, 2006; A416: 1
[20] Zhao Z Y, Xu L, Li G P, Xue R D, Zheng J H.Trans Mater Heat Treat, 2010; 31: 75
[20] (赵志毅, 徐 林, 李国平, 薛润东, 郑建华. 材料热处理学报, 2010; 31: 75)
[21] Moura V S, Lima L D, Pardal J M, Kina A Y, Corte R R A, Tavares S S M.Mater Charact, 2008; 59: 1127
[22] Do Nascimento A M, Ierardi M, Kina A Y, Tavares S. Mater Charact, 2008; 59: 1736
[23] Kim S, Lee I, Kim J, Jang S, Park Y, Kim K, Kim Y.Corros Sci, 2012; 64: 164
[24] Tan H, Jiang Y, Deng B, Sun T, Xu J, Li J. Mater Charact, 2009; 60: 1049
[25] Ortiz N, Curiel F F, López V H, Ruiz A.Corros Sci, 2013; 69: 236
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.