Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1493-1500    DOI: 10.3724/SP.J.1037.2013.00341
  论文 本期目录 | 过刊浏览 |
应变速率对DP780钢激光焊接接头动态变形行为的影响
董丹阳1),刘杨2),王磊2),杨玉玲1),李金凤1),金梦梦1)
1) 东北大学理学院, 沈阳 110819
2) 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS
DONG Danyang 1), LIU Yang 2), WANG Lei 2),YANG Yuling 1), LI Jinfeng 1), JIN Mengmeng 1)
1) College of Science, Northeastern University, Shenyang 110819
2) Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
引用本文:

董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
DONG Danyang, LIU Yang, WANG Lei, YANG Yuling, LI Jinfeng, JIN Mengmeng. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS[J]. Acta Metall Sin, 2013, 49(12): 1493-1500.

全文: PDF(4618 KB)  
摘要: 

研究了应变速率对DP780钢激光焊接接头的拉伸性能及变形行为的影响规律和机制.结果表明, 与母材相比, DP780钢激光焊接接头的变形行为对应变速率更敏感.随应变速率的增加, DP780钢激光焊接接头的强度提高, 塑性呈现整体下降趋势.在较低应变速率(<101 s-1)条件下, 随应变速率增加,焊接接头的强度有所提高, 但变化幅度不大, 塑性降低较明显;当应变速率超过101 s-1后, 强度的提高幅度增大,而塑性在应变速率101—102 s-1范围内有所恢复后再降低.DP780钢激光焊接接头拉伸变形过程中宏观力学行为的应变速率敏感性主要取决于DP780钢母材在不同应变速率下变形行为及机制的改变.随应变速率的增加, DP780钢激光焊接接头断裂位置距焊缝中心线的距离显著降低,断裂位置由母材区转移至热影响区的软化区. 动态载荷下,DP780钢激光焊接接头不同区域组织塑性变形行为应变速率依存性存在差异,是焊接接头断裂位置表现出明显应变率效应的本质原因.

关键词 激光焊接双相钢动态载荷应变速率变形行为     
Abstract

Dual phase (DP) steels have good combinations of strength and ductility, and are being increasingly used in vehicle body structures to meet enhanced government regulations and safety standards. The use of DP steels in automotive industries involves laser welding, which would lead to changes in local material properties and create potential safety and reliability issues under dynamic loads. The present work aimed to study the effects of strain rate on tensile properties and deformation behavior of laser welded DP780 steel joints. The results showed that the deformation behavior of laser welded joints was more sensitive to strain rate as compared to base metal of DP780 steel. The strength of DP780 steel joint increased with increasing strain rate, while the ductility decreased first with increasing strain rate from 10-3 to 101 s-1, and then increased up to a strain rate of 102 s-1. The strain rate sensitivity of the deformation behavior of DP780 steel joints was mainly dependent on the change of deformation behavior and its mechanisms of base metal at various strain  rates. The distance of the tensile failure location from the weld centerline decreased obviously with the increase of strain rate. And the failure location changed from the base metal to the softened heat—affected zone (HAZ) as strain rate increased. The mechanism for changing failure location can be related to the strain rate dependence of the plastic deformation behaviors of microstructures in various regions across a joint.

Key wordslaser welding    dual phase steel    dynamic load    strain rate    deformation behavior
收稿日期: 2013-06-21     
基金资助:

国家自然科学基金项目51101029, 国家教育部博士点专项基金项目20110042120025和中央高校基本科研业务费专项资金项目110405004资助

作者简介: 董丹阳, 女, 1979年生, 讲师, 博士

[1] Sodjit S, Uthaisangsuk V.  Mater Des, 2012; 41: 370
[2] Oliver S, Jones T B, Fourlaris G.  Mater Charact, 2007; 58: 390

[3] Khan A S, Baig M, Choi S H, Yang H S, Sun X.  Int J Plast, 2012; 30—31: 1<
[4] Huh J, Huh H, Lee C S.  Int J Plast, 2013; 44: 23
[5] Xia M, Sreenivasan N, Lawson S, Zhou Y, Tian Z.  J Eng Mater Technol, 2007; 129: 446
[6] Oliver S, Jones T B, Fourlaris G.  Mater Sci Technol, 2007; 23: 55
[7] Sharma R S, Molian P.  J Mater Process Technol, 2011; 211: 1888
[8] Xu W, Westerbaan D, Nayak S S, Chen D L, Goodwin F, Zhou Y.  Mater Des, 2013; 43: 373
[9] Farabi N, Chen D L, Li J, Zhou Y, Dong S J.  Mater Sci Eng, 2010; A527: 1215
[10] Reisgen U, Schleser M, Mokrov O, Ahmed E.  J Mater Process Technol, 2010; 210: 2188
[11] Hazratinezhad M, Mostafa Arab N B, Sufizadeh A R, Torkamany M J.Mater Des, 2012; 33: 83
[12] Sreenivasan N, Xia M, Lawson S, Zhou Y.  J Eng Mater Technol, 2008; 130: 0410041
[13] Farabi N, Chen D L, Zhou Y.  Procedia Eng, 2010; 2: 835
[14] Boyce B L, Dilmore M F.  Int J Impact Eng, 2009; 36: 263
[15] Kim J H, Kim D, Han H N, Barlat F, Lee M G.  Mater Sci Eng, 2013; A559: 222
[16] Wang W R, Li M, He C W, Wei X C, Wang D Z, Du H B.  Mater Des, 2013; 47: 510
[17] He Z P, He Y L, Ling Y T, Wu Q H, Gao Y, Li L.  J Mater Process Technol, 2012; 212: 2141
[18] Sun X, Soulami A, Choi K S, Guzman O, Chen W.  Mater Sci Eng, 2012; A541: 1
[19] Curtze S, Kuokkala V T, Hokka M, Peura P.  Mater Sci Eng, 2009; A507: 124
[20] Huh H, Kim S B, Song J H, Lim J H.  Int J Mech Sci, 2008; 50: 918
[21] Dong D Y, Liu Y, Wang L, Su L J.  Acta Metall Sin, 2013; 49: 159
(董丹阳, 刘杨, 王磊, 苏亮进. 金属学报, 2013; 49: 159)
[22] Baltazar Hernandez V H, Nayak S S, Zhou Y.  Metall Mater Trans, 2011; 42A: 3115
[23] Panda S K, Screenivasan N, Kuntz M L, Zhou Y.  J Eng Mater Technol, 2008; 130: 0410031
[24] Meyers M A.  Dynamic Behavior of Materials. 2nd Ed., New York: John Wiley and Sons Inc, 2006: 330
[25] Johnston W G, Gilman J J.  J Appl Phys, 1959; 30: 129
[26] Liu Y, Wang L, He S S, Feng F, Lu X D, Zhang B J.  Acta Metall Sin, 2012; 48: 49
(刘杨, 王磊, 何思斯, 冯飞, 吕旭东, 张北江. 金属学报, 2012; 48: 49)
[27] Liu J T, Wang Z G, Shang J K.  Acta Metall Sin, 2008; 44: 1409
(刘江涛, 王中光, 尚建库. 金属学报, 2008; 44: 1409)
[28] Liu Z L, You X C, Zhuang Z.  Int J Solids Struct, 2008; 45: 3674
[29] Livingston J D, Chalmers B.  Acta Mater, 1957; 5: 322
[30] Rusinek A, Klepaczko J R.  Mater Des, 2009; 30: 35
[31] Meyer L W, Herzig N, Halle T, Hahn F, Krueger L, Staudhammer K P.J Mater Process Technol, 2007; 182: 319
[32] Rajeev K, Sia N N.  Mech Mater, 1998; 27: 1
[33] Shao H P, Gould J, Albright C.  Metall Mater Trans, 2007; 38B: 321
[34] Ghoo B Y, Keum Y T, Kim Y S.  J Mater Process Technol, 2001; 113: 692
[35] Dry D, Waddell W, Owen D R J.  Sci Technol Weld Joining, 2002; 7: 11
[36] Dirras G, Gubicza J, Couque H, Ouarem A, Jenei P.  Mater Sci Eng, 2013; A564: 273
[37] Zhu D Z, Wu G H, Chen G Q, Zhang Q.  Mater Sci Eng, 2008; A487: 536
[38] Lee W S, Lin C F.  Mater Sci Eng, 1998; A241: 48
[39] Paul S K.  Comput Mater Sci, 2012; 56: 34
[40] Sodjit S, Uthaisangsuk V.  Mater Des, 2012; 41: 370
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[5] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[6] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[7] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[9] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[11] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[12] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[13] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[14] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[15] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.